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1 Convex Case

1.1 The problem and assumptions

Consider the composite problem

ϕ∗ = min ϕ(x) = f(x) + h(x)

s.t. x ∈ Rn

where:

1) h ∈ Conv (Rn)

2) f is convex on domh (and hence dom f ⊃ domh);

3) there exists L > 0 such that f is L-smooth on domh

4) the set X∗ of optimal solutions is nonempty (and hence
ϕ∗ ∈ R).
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Motivation Let us now motivate the class of methods we are
interested in studying in this section. Given A ≥ 0 and x, y ∈
Rn, we want to find A+ > A and x+, y+ ∈ Rn such that

η+(u) := A+
[
ϕ(y+)− ϕ(u)

]
+

1

2
∥u− x+∥2

≤ A [ϕ(y)− ϕ(u)] +
1

2
∥u− x∥2 =: η(u) ∀u ∈ Rn (1)

Using the above construction, we can then generate a sequence
{(xk, yk, Ak)} ⊂ Rn × Rn × R+ such that the quantity

ηk(u) := Ak [ϕ(yk)− ϕ(u)] +
1

2
∥u− xk∥2

satisfies
ηk+1(u) ≤ ηk(u) ∀k ≥ 0, ∀u ∈ Rn.

As a consequence, we have

ηk(u) ≤ η0(u) ∀k ≥ 0, ∀u ∈ Rn,

and thus

ϕ(yk)−ϕ(u) ≤
A0

Ak

[ϕ(y0)− ϕ(u)]+
1

2Ak

∥u−x0∥2 ∀k ≥ 0, ∀u ∈ Rn.

If A0 is chosen to be zero, then

ϕ(yk)− ϕ(u) ≤ 1

2Ak

∥u− x0∥2 ∀k ≥ 0, u ∈ Rn.

In particular, taking u = PrX∗(x0), we conclude that

ϕ(yk)− ϕ∗ ≤
d20
2Ak

∀k ≥ 0,

where d0 := min{∥x∗ − x0∥ : x∗ ∈ X∗}.

Hence, the larger Ak grows, the faster the primal gap ϕ(yk)−ϕ∗
approaches zero.
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Let us now give a sufficient condition for (1) to hold.

Lemma 1.1. Assume that y+ ∈ Rn, A+ > A, and γ ∈ Conv (Rn),
satisfy

γ ≤ ϕ (2)

A+ϕ(y+) ≤ Aϕ(y) + min

{
aγ(u) +

1

2
∥u− x∥2

}
(3)

where a := A+ − A, and define

x+ = argmin

{
aγ(u) +

1

2
∥u− x∥2

}
. (4)

Then, (x+, y+, A+) satisfies (1).

Proof: Let

θ := min

{
aγ(u) +

1

2
∥u− x∥2

}
Since x+ is the optimal solution of the above problem, we have
that for every u ∈ Rn,

Aϕ(y) + aγ(u) +
1

2
∥u− x∥2 ≥ Aϕ(y) + θ +

1

2
∥u− x+∥2

≥ A+ϕ(y+) +
1

2
∥u− x+∥2.

The above inequality then implies that

A+[ϕ(y+)− ϕ(u)] +
1

2
∥u− x+∥2

(since a = A+ − A) ≤ A[ϕ(y)− ϕ(u)] + a[γ(u)− ϕ(u)] +
1

2
∥u− x∥2

(since a > 0 and γ ≤ ϕ) = A[ϕ(y)− ϕ(u)] +
1

2
∥u− x∥2

and hence that the conclusion of the lemma holds.
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From now on, we will focus on:

Goal: Given (x, y, A), find y+, A+ > A and γ ≤ ϕ satisfying
condition (3).

Lemma 1.2. Let a > 0 and γ ∈ Conv (Rn) such that γ ≤ ϕ be
given and define

ỹ =
Ay + ax+

A+ a
, x̃ =

Ay + ax

A+ a

where x+ is as in (4). Then

Aϕ(y) + min

{
aγ(u) +

1

2
∥u− x∥2

}
≥ (A+ a)

[
γ(ỹ) +

A+ a

2a2
∥ỹ − x̃∥2

]
.

Proof: First observe that the definitions of x̃ and ỹ imply that

∥ỹ − x̃∥ = a

A+ a
∥x+ − x∥

For every a > 0, have

Aϕ(y)+min

{
aγ(u) +

1

2
∥u− x∥2

}
(definition of x+ in (4)) = Aϕ(y) + aγ(x+) +

1

2
∥x+ − x∥2

(since γ ≤ ϕ) ≥ Aγ(y) + aγ(x+) +
1

2
∥x+ − x∥2

(convexity of γ) ≥ (A+ a) γ

(
Ay + ax+

A+ a

)
+

1

2
∥x+ − x∥2

(definition of ỹ) = (A+ a) γ(ỹ) +
1

2
∥x+ − x∥2

The conclusion of the lemma now follows by combining the above
two relations.

Corollary 1.3. In addition to the assumptions of Lemma 1.2, assume also
that y+ ∈ Rn is a point such that

ϕ(y+) ≤ γ(ỹ) +
A+ a

2a2
∥ỹ − x̃∥2 (5)

and set A+ = A+a. Then, (y+, A+, γ) satisfy (3), and hence (x+, y+, A+)
satisfies (1).

Proof: The first conclusion follows immediately from Lemma 1.2 while the
second one follows from Lemma 1.1.
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1.2 First ACG variant (Atouch and Teboule)

This variant chooses a > 0 such that

A+ a

a2
= L

and sets
y+ = ỹ, γ(·) = ℓf (·; x̃) + h(·)

Then,

γ(ỹ) +
A+ a

2a2
∥ỹ − x̃∥2 = γ(ỹ) +

L

2
∥ỹ − x̃∥2

= γ(y+) +
L

2
∥y+ − x̃∥2

= ℓf (y
+; x̃) + h(y+) +

L

2
∥y+ − x̃∥2

≥ (f + h)(y+) = ϕ(y+)

Remark: Instead of setting y+ = ỹ, we can instead choose y+

such that

γ(ỹ) +
L

2
∥ỹ − x̃∥2 ≥ γ(y+) +

L

2
∥y+ − x̃∥2

e.g., y+ given by

y+ = argmin

{
ℓf (u; x̃) + h(u) +

L

2
∥u− x̃∥2

}
(6)

The latter variant is more expensive since it solves two subprob-
lems per iteration, namely, subproblems (4) and (6).
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Algorithm 1 (AT-ACG variant)

0. Let x0 ∈ domh be given, and set y0 = x0, A0 = 0, and
k = 0;
1. Compute

ak =
1 +
√
1 + 4LAk

2L
, x̃k =

Akyk + akxk

Ak + ak
; (7)

2. Compute

xk+1 := argmin
u∈domh

{
ak[ℓf (u; x̃k) + h(u)] +

1

2
∥u− xk∥2

}
, (8)

yk+1 :=
Akyk + akxk+1

Ak + ak
, (9)

Ak+1 = Ak + ak; (10)

3. Set k ← k + 1 and go to step 1.

Obs: Formula for ak and Ak+1 in (7) imply that

Ak+1

a2k
=

Ak + ak
a2k

= L. (11)

Question: How fast does Ak grow?

Have

ak ≥
1 +
√
4LAk

2L
≥ 1

2L
+

√
Ak

L
and so

Ak+1 = Ak + ak ≥
1

2L
+

√
Ak

L
+ Ak ≥

(√
Ak +

1

2

√
1

L

)2

Hence √
Ak+1 ≥

√
Ak +

1

2

√
1

L
This implies that√

Ak ≥
√

A0 +
k

2

√
1

L
=

k

2

√
1

L

and hence that

Ak ≥
k2

4L
Hence, the convergence rate of the AT-variant is

ϕ(yk)− ϕ∗ ≤
d20
2Ak

≤ 2Ld20
k2
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1.3 Second ACG variant (FISTA)

This variant was originally proposed by Nesterov for set opti-
mization problems and later extended by Teboule et al to com-
posite optimization problems.

While the AT variant solves a composite subproblem for xk+1

and obtains yk+1 in a straightforward manner, the FISTA variant
below solves a composite subproblem for yk+1 and easily obtains
xk+1.

Algorithm 2 (FISTA)

0. Let x0 ∈ domh be given, and set y0 = x0, A0 = 0, and
k = 0;
1. Compute

ak =
1 +
√
1 + 4LAk

2L
, x̃k =

Akyk + akxk

Ak + ak
; (12)

2. Compute

yk+1 := argmin
x∈domh

{
ℓf (x; x̃k) + h(x) +

L

2
∥x− x̃k∥2

}
, (13)

xk+1 = xk + Lak(yk+1 − x̃k), (14)

Ak+1 = Ak + ak; (15)

3. Set k ← k + 1 and go to step 1.

The justification of this variant relies on choosing

γ(·) = γ̃(y+) + L⟨x̃− y+, · − y+⟩ (16)

where for this section we let

γ̃(·) := ℓf (·; x̃k) + h(·)
Clearly,

γ̃(·) + L

2
∥ · −x̃∥2 ≥ ϕ(·)

and, by (13), have

y+ = argmin

{
γ̃(u) +

L

2
∥u− x̃∥2

}
Lemma 1.4. Affine function γ(·) defined in (16) satisfies

γ(y+) = γ̃(y+), γ(·) ≤ γ̃(·), y+ = argmin

{
γ(u) +

L

2
∥u− x̃∥2

}
Proof: Exercise

7



Using the above lemma, let us verify that (5) holds. Indeed,

γ(ỹ)+
A+ a

2a2
∥ỹ − x̃∥2 = γ(ỹ) +

L

2
∥ỹ − x̃∥2

≥ min

{
γ(u) +

L

2
∥u− x̃∥2

}
= γ(y+) +

L

2
∥y+ − x̃∥2

= γ̃(y+) +
L

2
∥y+ − x̃∥2 ≥ ϕ(y+)

showing that (5) holds.

Moreover, by (14), we have

x+ = x+ aL(y+ − x̃)

Hence, the definition of the affine function γ implies that

x+ = x− a∇γ

which is the optimality condition for x+ to be optimal for the
subproblem in (4). We have thus shown that x+ in (14) satisfies
(4).
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Alternative description of FISTA

Lemma 1.5. There holds:

x+ =
A+y+ − Ay

a
.

Proof: Have

x+ = x+ aL(y+ − x̃) = x+ aL

(
y+ − Ay + ax

A+ a

)
= x+

A+ a

a

(
y+ − Ay + ax

A+ a

)
=

A+y+ − Ay

a
.

Lemma 1.6. There holds:

x̃+ = y+ +
1

t+
(t− 1)(y+ − y)

where

t =
A+

a
= aL ≥ 1.

Proof: Have

x̃+ =
A+

A++
y+ +

a+

A++
x+

=

(
y+ − a+

A++
y+
)
+

a+

A++

(
A+y+ − Ay

a

)
= y+ +

a+

A++

(
A+

a
− 1

)
(y+ − y)

= y+ +
1

t+
(t− 1)(y+ − y).

Lemma 1.7. There holds:

(t+)2 − t+ − t2 = 0,

and hence

t+ =
1 +
√
1 + 4t2

2
.

Proof:

(t+)2 − t+ = t+(t+ − 1) =
A++

a+

(
A++

a+
− 1

)
=

A++

a+
A+

a+

= LA+ = (La)
A+

a
= t2.
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Algorithm 3 (FISTA-revisted)

0. Let y0 ∈ domh be given, and set x̃0 = y0, t0 = 1, and
k = 0;
1. Compute

yk+1 := argmin
x∈domh

{
ℓf (x; x̃k) + h(x) +

L

2
∥x− x̃k∥2

}
, (17)

and then set

tk+1 =
1 +

√
1 + 4t2k
2

x̃k+1 = yk+1 +
tk − 1

tk+1

(yk+1 − yk)

3. Set k ← k + 1 and go to step 1.

Remarks:

• Extrapolated composite gradient method

• Somewhat related to the heavy ball method (due to Polyak)
where yk+1 is computed as in (17) and

x̃k+1 = yk+1 + βk(x̃k − x̃k−1)

for some scalar βk > 0.
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2 Strongly convex case

2.1 The problem and assumptions

Consider the composite problem

(P ) ϕ∗ = min ϕ(x) = f(x) + h(x)

s.t. x ∈ Rn

where:

1) h ∈ Convµ (Rn) for some µ ≥ 0;

2) f : Rn → R is convex everywhere;

3) there exists L > 0 such that f is L-smooth everywhere;

4) the set X∗ of optimal solutions of (P ) is nonempty (and
hence ϕ∗ ∈ R).
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Motivation: Given A ≥ 0 and τ > 0, and x, y ∈ Rn, suppose
we can always find A+ > A, τ+ > τ, and x+, y+ ∈ Rn such that

η+(u) := A+
[
ϕ(y+)− ϕ(u)

]
+

τ+

2
∥u− x+∥2

≤ A [ϕ(y)− ϕ(u)] +
τ

2
∥u− x∥2 =: η(u) ∀u ∈ Rn (18)

Using the above construction, we can then generate an infinite
sequence {(xk, yk, Ak, τk)} ⊂ Rn × Rn × R+ × R+ such that the
quantity

ηk(u) := Ak [ϕ(yk)− ϕ(u)] +
τk
2
∥u− xk∥2

satisfies
η0(u) ≥ ηk(u) ∀k ≥ 0, u ∈ Rn.

Dividing this inequality by Ak yields

A0

Ak

[ϕ(y0)− ϕ(u)] +
τ0
2Ak

∥u− x0∥2

≥ ϕ(yk)− ϕ(u) +
τk
2Ak

∥u− xk∥2 ≥ ϕ(yk)− ϕ(u)

If A0 and τ0 are chosen to be zero and one, respectively, then

ϕ(yk)− ϕ(u) ≤ 1

2Ak

∥u− x0∥2 ∀k ≥ 0, u ∈ Rn,

In particular, taking u = ProjX∗(x0), we conclude that

ϕ(yk)− ϕ∗ ≤
d20
2Ak

∀k ≥ 0

where d0 := min{∥x∗ − x0∥ : x∗ ∈ X∗}.

Hence, the larger Ak grows, the faster the primal gap ϕ(yk)−ϕ∗
approaches zero.
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Proposition 2.1. Let (x, y, A, τ) ∈ Rn × Rn × R+ × R++ be
given and assume that (y+, γ(·), a) ∈ Rn × Convµ (Rn) × R++

satisfies the KEY condition that

γ ≤ ϕ, ϕ(y+) ≤ γ(ỹ) +
τ(A+ a)

2a2
∥ỹ − x̃∥2 (19)

where

ỹ :=
Ay + ax+

A+
, x̃ :=

Ay + ax

A+

and

A+ := A+ a, x+ := argmin
{
aγ(u) +

τ

2
∥u− x∥2

}
. (20)

Then, the quadruple (x+, y+, A+, τ+) where

τ+ := τ + aµ (21)

satisfies

η+(u) := A+
[
ϕ(y+)− ϕ(u)

]
+

τ+

2
∥u− x+∥2

≤ A [ϕ(y)− ϕ(u)] +
τ

2
∥u− x∥2 =: η(u) ∀u ∈ Rn (22)

Proof: First observe that the definitions of x̃ and ỹ imply that

∥ỹ − x̃∥ = a

A+ a
∥x+ − x∥ (23)

For every a > 0, have

Aϕ(y) + min
{
aγ(u) +

τ

2
∥u− x∥2

}
(definition of x+) = Aϕ(y) + aγ(x+) +

τ

2
∥x+ − x∥2

(since γ ≤ ϕ) ≥ Aγ(y) + aγ(x+) +
τ

2
∥x+ − x∥2

(convexity of γ) ≥ (A+ a) γ

(
Ay + ax+

A+ a

)
+

τ

2
∥x+ − x∥2

(definition of ỹ) ≥ (A+ a) γ(ỹ) +
τ

2
∥x+ − x∥2

(equation (23)) ≥ (A+ a)

[
γ(ỹ) +

τ(A+ a)

2a2
∥ỹ − x̃∥2

]
(equation (19)) ≥ (A+ a)ϕ(y+)

(def of A+) = A+ϕ(y+)

This inequality together with the assumption that γ(·) ∈ Convµ (Rn)
yield

Aϕ(y) + aγ(u) +
τ

2
∥u− x∥2 ≥ A+ϕ(y+) +

τ + aµ

2
∥x+ − u∥2

= A+ϕ(y+) +
τ+

2
∥x+ − u∥2
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where the last equality is due the the definition of τ+ in (21).
Now, using the assumption that γ ≤ ϕ and the definition of A+

in (20), we easily see that the above relation implies (22).
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2.2 First ACG variant (Atouch and Teboule)

This variant chooses a > 0 such that

τ(A+ a)

a2
= L

and sets

y+ = ỹ, γ(·) = ℓf (·; x̃) + h(·) ∈ Convµ (Rn)

Then, γ ≤ ϕ and

γ(ỹ) +
τ(A+ a)

2a2
∥ỹ − x̃∥2 = γ(ỹ) +

L

2
∥ỹ − x̃∥2

= γ(y+) +
L

2
∥y+ − x̃∥2

= ℓf (y
+; x̃) + h(y+) +

L

2
∥y+ − x̃∥2

≥ (f + h)(y+) = ϕ(y+)

Instead of y+ = ỹ, we can instead choose y+ such that

γ(ỹ) +
L

2
∥ỹ − x̃∥2 ≥ γ(y+) +

L

2
∥y+ − x̃∥2

e.g., y+ given by

y+ = argmin

{
ℓf (u; x̃) + h(u) +

L

2
∥u− x̃∥2

}
(24)

The latter variant is more expensive since it solves two subprob-
lems per iteration, namely, subproblems (20) and (24).
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Algorithm 4 (AT-ACG variant)

0. Let x0 ∈ domh be given, and set y0 = x0, A0 = 0, τ0 = 1,
and k = 0;
1. Compute

ak =
τk +

√
τ 2k + 4LτkAk

2L
, x̃k =

Akyk + akxk

Ak + ak
; (25)

2. Compute

xk+1 := argmin
u∈domh

{
ak[ℓf (u; x̃k) + h(u)] +

τk
2
∥u− xk∥2

}
, (26)

yk+1 :=
Akyk + akxk+1

Ak + ak
(27)

Ak+1 = Ak + ak, τk+1 = τk + akµ; (28)

3. Set k ← k + 1 and go to step 1.

Remark: Formula for ak and Ak+1 in (25) and (28), respec-
tively, imply that

τkAk+1

a2k
=

τk(Ak + ak)

a2k
= L. (29)

16



Question: How fast does Ak grow?

1) By (25) and the fact that τk ≥ τ0 = 1, have

ak ≥
τk +

√
4LτkAk

2L
≥ 1

2L
+

√
Ak

L

and so

Ak+1 = Ak + ak ≥
1

2L
+

√
Ak

L
+ Ak ≥

(√
Ak +

1

2

√
1

L

)2

Hence √
Ak+1 ≥

√
Ak +

1

2

√
1

L
This implies that√

Ak ≥
√

A0 +
k

2

√
1

L
=

k

2

√
1

L

and hence that

Ak ≥
k2

4L
2) By (25) again, have

ak ≥
τk +

√
4LτkAk

2L
≥ τk

2L
+

√
τkAk

L

and so

Ak+1 = Ak + ak ≥
τk
2L

+

√
τkAk

L
+ Ak ≥

(√
Ak +

1

2

√
τk
L

)2

Now, since A0 = 0 and τ0 = 1, we have

Ak = A0+
k−1∑
i=0

ai =
k−1∑
i=0

ai, τk = τ0+µ

k−1∑
i=0

ai = 1+µAk ≥ µAk

Combining the above two relations, we get

Ak+1 ≥

(√
Ak +

1

2

√
µAk

L

)2

= Ak

(
1 +

1

2

√
µ

L

)2

Since A1 = 1/L, have

Ak ≥
1

L

(
1 +

1

2

√
µ

L

)2(k−1)

Hence, by 1) and 2) above

Ak ≥
1

L
max

{
k2

4
,

(
1 +

1

2

√
µ

L

)2(k−1)
}
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Hence, the convergence rate of the AT-variant is

ϕ(yk)− ϕ∗ ≤
d20
2Ak

≤ Ld20
2

min

{
4

k2
,

(
1 +

1

2

√
µ

L

)−2(k−1)
}

Remark (iteration-complexity): For any tolerance ε > 0, if

k ≥ min

{
2

√
Ld20
2ε

,

[
1

2
+

√
L

µ

]
log+1

(
Ld20
2ε

)
+ 1

}
.

then have
ϕ(yk)− ϕ∗ ≤ ε

Proof: Exercise
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2.3 Second ACG variant (S-FISTA)

This variant was originally proposed by Nesterov for set opti-
mization problems and later extended by Teboule et al to com-
posite optimization problems.

While the AT variant solves a composite subproblem for xk+1

and obtains yk+1 in a straightforward manner, the FISTA variant
below solves a composite subproblem for yk+1 and easily obtains
xk+1.

Algorithm 5 (S-FISTA)

0. Given x0 ∈ domh, set y0 = x0, A0 = 0, and k = 0;
1. Compute

ak =
τk +

√
τ 2k + 4LτkAk

2L
, x̃k =

Akyk + akxk

Ak + ak
; (30)

2. Compute

yk+1 := argmin
x∈domh

{
ℓf (x; x̃k) + h(x) +

L

2
∥x− x̃k∥2

}
, (31)

xk+1 =
1

τk+1

[τkxk + Lak(yk+1 − x̃k) + µakyk+1] ; (32)

Ak+1 = Ak + ak, τk+1 = τk + aµ (33)

3. Set k ← k + 1 and go to step 1.

The justification of this variant relies on choosing

γ(·) = γ̃(y+) + L⟨x̃− y+, · − y+⟩+ µ

2
∥ · −y+∥2 (34)

where for this analysis we let

γ̃(·) := ℓf (·; x̃) + h(·)

Clearly,

γ̃(·) + L

2
∥ · −x̃∥2 ≥ ϕ(·)

and, by (13), have

y+ = argmin

{
γ̃(u) +

L

2
∥u− x̃∥2

}
(35)
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Lemma 2.2. Function γ(·) defined in (16) satisfies

γ ∈ Convµ (Rn), γ(·) ≤ γ̃(·) ≤ ϕ(·)

and

γ(y+) = γ̃(y+), y+ = argmin

{
γ(u) +

L

2
∥u− x̃∥2

}

Proof: The first, third and fourth relations above are straight-
forward. It remains to show that γ ≤ γ̃. By (35) and funda-
mental result of convex analysis, have

γ̃(u) +
L

2
∥u− x̃∥2

≥ γ̃(y+) +
L

2
∥y+ − x̃∥2 + L+ µ

2
∥u− y+∥2

(by (34)) = γ(u) +
L

2

(
∥y+ − x̃∥2 + 2⟨y+ − x̃, u− y+⟩+ ∥u− y+∥2

)
= γ(u) +

L

2
∥u− x̃∥2

and hence γ ≤ γ̃ holds.

Using the above lemma, let us verify that (19) holds. Indeed,

γ(ỹ) +
τ(A+ a)

2a2
∥ỹ − x̃∥2 = γ(ỹ) +

L

2
∥ỹ − x̃∥2

≥ min

{
γ(u) +

L

2
∥u− x̃∥2

}
= γ(y+) +

L

2
∥y+ − x̃∥2

= γ̃(y+) +
L

2
∥y+ − x̃∥2 ≥ ϕ(y+)

showing that (19) holds.
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Moreover, by (20), x+ is always given by

x+ = argmin
{
aγ(u) +

τ

2
∥u− x∥2

}
and hence satisfies

a∇γ(x+) + τ(x+ − x) = 0

Since
∇γ(u) = L(x̃− y+) + µ(u− y+),

we get

a[L(x̃− y+) + µ(x+ − y+)] + τ(x+ − x) = 0

and hence

τ+x+ = (τ + aµ)x+ = τx+ aL(y+ − x̃) + µay+

which explains the update formula (32) for xk+1.
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2.4 Stationarity Complexity Bounds

Let Lf be the smallest L such that f is L-smooth. Let us con-
sider the FISTA version with L > Lf .

Definition 2.3. A pair (y, u) satisfying

u ∈ ∇f(x) + ∂h(x), ∥u∥ ≤ ρ

is called a a ρ-approximate stationary solution pair of ϕ = f+h.

The following result describes the iteration-complexity of S-
FISTA to find a ρ-approximate stationary solution pair of ϕ.

Lemma 2.4. Define

uk = ∇f(yk)−∇f(x̃k−1) + L(x̃k−1 − yk).

Then, the following statements hold:

a) for every k ≥ 1,

uk ∈ ∇f(yk) + ∂h(yk), min
1≤i≤k

∥ui∥2 ≤
8L2d20

(L− Lf )
∑k

i=1 Ai

;

b) for any ρ > 0, S-FISTA generates a ρ-approximate station-
ary solution pair (y, u) := (yk, uk) in at most⌈
min

{(
12ζd20
ρ2

)1/3

,

(
1 +

2
√
L

√
µ

)
log

(
1 +

ζ(c2 − 1)d20
ρ2

)}⌉
iterations, where

ζ = ζ(L,Lf ) :=
8L3

L− Lf

, c = c(µ, L) = 1 +
1

2

√
µ

L
.
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3 Nesterov’s approximation scheme

Consider the min-max SP problem

ϕ∗ = min{ϕ(x) := (f + h)(x) + Φ(x) : x ∈ Rn} (36)

where
Φ(x) = max{⟨Ax, y⟩ − g(y) : y ∈ Rm} (37)

and the following conditions are assumed:

1) h ∈ Conv (Rn) for some µ ≥ 0;

2) for some L > 0, f : Rn → R is convex and L-smooth;

3) g ∈ Conv (Rm) and dom g is bounded;

4) A : Rn → Rm is a linear map;

5) the set X∗ of optimal solutions of (36) is nonempty (and
hence ϕ∗ ∈ R).

Remarks:

• The boundedness condition on dom g is not needed but
guarantees that Φ(x) is finite everywhere (exercise).

• the saddle function for the above min-max SP problem is

Ψ(x, y) := (f + h)(x) + ⟨Ax, y⟩ − g(y) (38)

which is a closed convex-concave one.
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Proposition 3.1. Consider the problem

Φ̃(z) = max{⟨z, y⟩ − g̃(y) : y ∈ Rm} (39)

where g̃(·) ∈ Convµ (Rm) for some µ > 0. Then:

a) for every z ∈ Rn, problem (39) has a unique optimal solu-
tion ỹ(z);

b) Φ̃ is a finite everywhere convex function which is (1/µ)-
smooth and whose gradient is given by

∇Φ̃(z) = ỹ(z) ∀z ∈ Rn.

Remark:

• Can not apply this result to (37) since the function g(·) in
(37) is not assumed to be in Convµ (Rm)
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So let us perturb function g by a positive multiple of a convex
function d ∈ Conv (Rm) such that:

• d(·) is 1-strongly convex on Y := dom g;

• there exists y0 ∈ Y such that d(y0) = 0 and d(y) ≥ 0 for
every y ∈ Y ,

i.e., set gµ(·) := g(·)+µd(·) and consider the perturbed problem

Φµ(x) = max{⟨Ax, y⟩ − gµ(y) : y ∈ Rm}
= max{⟨Ax, y⟩ − (g + µd)(y) : y ∈ Rm}. (40)

Example: d(y) = ∥y − y0∥2/2 for every y ∈ Rm

Idea of the scheme: If µ is small, then Φµ is a smooth finite
everywhere convex function which closely approximates Φ. We
can then solve the perturbed problem

(ϕµ)∗ = min{ϕµ(x) := (f + h)(x) + Φµ(x) : x ∈ Rn} (41)

using one of the ACG variants (e.g., FISTA).
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Proposition 3.2. For every x ∈ Rn and µ > 0, we have

a) (40) has a unique optimal solution yµ(x);

b) Φµ is a finite everywhere convex function; moreover, Φµ is
(∥A∥2/µ)-smooth,

∇Φµ(x) = A∗yµ(x) ∀x ∈ Rn

and yµ(·) is (∥A∥/µ)-Lipschitz continuous;

c) there holds

0 ≤ ϕ(x)− ϕµ(x) = Φ(x)− Φµ(x) ≤ µD2
Y

where
DY := sup{[d(y)]1/2 : y ∈ Y };

d) there holds
(ϕµ)∗ ≤ ϕ∗ ≤ (ϕµ)∗ + µD2

Y

Proof: a) Consider problem (39) with g̃ = gµ and note that

Φµ(x) = Φ̃(Ax) (42)

where Φ̃ is as in (39). Clearly, in view of Prop 3.1(a) with
z = Ax, (40) has a unique optimal solution yµ(x) = ỹ(Ax).

b) It follows from (42) and Prop 3.1(b) that Φµ is is a finite
everywhere convex function such that

∇Φµ(x) = A∗∇Φ̃(Ax) = A∗ỹ(Ax) = A∗yµ(x) ∀x ∈ Rn.

Hence, for every x, x′ ∈ Rn, have

∥∇Φµ(x
′)−∇Φµ(x)∥ = ∥A∗ỹ(Ax′)− A∗y(Ax)∥

≤ ∥A∗∥∥ỹ(Ax′)− ỹ(Ax)∥

Prop 3.1(b) ≤ ∥A
∗∥
µ
∥Ax′ − Ax∥

≤ ∥A
∗∥∥A∥
µ

∥x′ − x∥

=
∥A∥2

µ
∥x′ − x∥
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c) The definition of DY and the assumption that d(y) ≥ 0 for
every y ∈ Y imply that for every x ∈ Rn and y ∈ Y ,

⟨Ax, y⟩ − (g + µd)(y)

≤ ⟨Ax, y⟩ − g(y)

≤ ⟨Ax, y⟩ − g(y) + µ[D2
Y − d(y)]

≤ ⟨Ax, y⟩ − (g + µd)(y) + µD2
Y

Taking the supremum of both sides with respect to y, we then
conclude that

Φµ(x) ≤ Φ(x) ≤ Φµ(x) + µD2
Y ∀x ∈ Rn.

d) Follows from c) and the definitions of ϕ∗ and (ϕµ)∗.
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Algorithm 6 (Nesterov approximation scheme)

0) Let ε > 0 and x0 ∈ domh be given and set

µ =
ε

2D2
Y

;

1) Apply an ACG variant to the perturbed problem (41)
started from x0 and stop with an iterate xk satisfying

ϕµ(xk)− (ϕµ)∗ ≤
ε

2
(∗)

Obs: (∗) can also be replaced by ϕ(xk)− ϕ∗ ≤ ε

Note that

ϕ(xk)− ϕ∗ = [ϕ(xk)− ϕµ(xk)] + [ϕµ(xk)− (ϕµ)∗] + [(ϕµ)∗ − ϕ∗]

≤ µD2
Y + [ϕµ(xk)− (ϕµ)∗] + 0 ≤ ε

2
+

ε

2
+ 0 = ε

Analysis of the scheme:

By the ACG analysis, we have that

ϕ(xk)− ϕ(x) ≤ ϕµ(xk) + µD2
Y − ϕµ(x) ≤

∥x0 − x∥2

2Ak

+ µD2
Y

≤
(
L+
∥A∥2

µ

)
2∥x0 − x∥2

k2
+

ε

2

Taking x = ProjX∗(x0), we have

ϕ(xk)− ϕ∗ ≤
(
L+
∥A∥2

µ

)
2d20
k2

+
ε

2

So, if

k2 ≥
(
L+
∥A∥2

µ

)
4d20
ε

then ϕ(xk)− ϕ∗ ≤ ε.

So, the iteration complexity of Nesterov’s approximation scheme
is

O1

((√
L+
∥A∥
√
µ

)
d0√
ε

)
= O1

((√
L

ε
+
∥A∥DY

ε

)
d0

)
.
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Another Termination:

Let

fµ = f +Ψµ, Lµ = L+
∥A∥2

µ

Then fµ is Lµ-smooth.

Setting

uk = ∇fµ(xk)−∇f̃µ(x̃k−1) + Lµ(x̃k−1 − xk)

have
uk ∈ ∇fµ(xk) + ∂h(xk) ∀k ≥ 0 (43)

Moreover, we have

min
i≤k
∥ui∥2 = O

(
L2
µd

2
0

k3

)
(44)

Hence, the complexity of finding k such that ∥uk∥ ≤ ρ is

O

((
Lµd0
ρ

)2/3
)
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Now let us interpret (43), i.e., the inclusion

uk ∈ ∇fµ(xk) + ∂h(xk).

Have

∇fµ(x) = ∇f(x) +∇Ψµ(x) = ∇f(x) + A∗yµ(x)

Now, let yk := yµ(xk). Then,

∇fµ(xk) = ∇f(xk) + A∗yk

So, (43) reduces to

uk ∈ ∇f(xk) + A∗yk + ∂h(xk)

Also, by the definition of yµ(·) as being the optimal solution of
(40), we have

0 ∈ −Ax+ ∂gµ(yµ(x)) = 0 ∀x ∈ Rn.

Taking x = xk yields

0 ∈ −Axk + ∂gµ(yk)

or equivalently

0 ∈ −Axk + ∂g(yk) + µ∇d(yk)

So let
vk := −µ∇d(yk)

Then

uk ∈ ∇f(xk) + A∗yk + ∂h(xk), vk ∈ −Axk + ∂g(yk)

Now, the optimality condition for (x, y) to be a saddle point for
Ψ in (38) is

0 ∈ ∇f(x) + A∗y + ∂h(x), 0 ∈ −Ax+ ∂g(y)

Hence, if the residual pair (uk, vk) is small then (xk, yk) is a near
saddle point for Ψ.
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Now uk can be made small by (44).

How about vk? If the quantity

D̃Y := sup{∥∇d(yk)∥ : k ≥ 1}

is finite and µ is chosen so as to satisfy

µ ≤ ρ

D̃Y

then
∥vk∥ = µ∥∇d(yk)∥ ≤ µD̃Y ≤ ρ

Special case: If d(y) = ∥y − y0∥2/2 and Y is bounded, then

D̃Y = sup {∥yk − y0∥ : k ≥ 1} ≤
√
2DY

Hence, it suffices to choose

µ =
ρ√
2DY

Exercise: Consider the case where Y is unbounded and d(y) =
∥y − y0∥2/2. Show that D̃Y is also finite.

Hint:

• show that xk is bounded;

• show that

∥yk − y0∥ ≤
∥A∥
µ
∥xk − x0∥
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