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1 Problem Description and Assumptions

Consider the set optimization problem

f∗ = min{(f + δX)(x) : x ∈ Rn} = min{f(x) : x ∈ X}

Assumptions:

A.1) X ⊂ Rn is nonempty closed convex and, for some µ > 0, function f
is µ-strongly convex on X

A.2) there exists M ≥ 0 with the following property: for every x ∈ X,
there exists s(x) ∈ ∂f(x) such that ∥s(x)∥ ≤ M

A.3) optimal solution set X∗ is nonempty, and hence f∗ ∈ R

Subgradient Method (SM)

0) x0 ∈ X is given

1) For k = 0, 1, 2, . . ., do

– choose stepsize λk > 0 and set sk = s(xk)

– compute
xk+1 = ProjX(xk − λksk)

2 Analysis

2.1 Variable stepsize case

This subsection considers the case where the sequence of stepsizes {λk} is
chosen as

λk =
2

µ(k + 1)
∀k ≥ 0. (1)
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Proposition 2.1 Assume that (1) holds and, for any K ≥ 0, define

θ∗K = min
k=0,...,K

[f(xk)− f(x∗)].

Then, for every x∗ ∈ X∗, we have

θ∗K +
µ(K + 1)

2(K + 2)
∥xK+1 − x∗∥2 ≤ 2M2

µ(K + 2)

As a consequence, if K ≥ 4M2/(µε) then θ∗K ≤ ε.

The proof of the above result requires a few technical lemmas.

Lemma 2.2 For every k ≥ 0 and x ∈ X, have

2λk[f(xk)− f(x)] ≤ (1− λkµ)∥xk − x∥2 − ∥xk+1 − x∥2 + λ2
k∥sk∥2

Proof: Let x ∈ X be given. Have

∥xk+1 − x∥2 = ∥ProjX(xk − λksk)− x∥2

= ∥ProjX(xk − λksk)− ProjX(x)∥2

≤ ∥xk − λksk − x∥2

= ∥xk − x∥2 + λ2
k∥sk∥2 + 2λk⟨sk, x− xk⟩

The result now follows from the fact that

f(x)− f(xk) ≥ ⟨sk, x− xk⟩+
µ

2
∥x− xk∥2

Lemma 2.3 Assume that (1) holds. Then, for every k ≥ 1 and x ∈ Rn,
we have:

(k + 1)[f(xk)− f(x)] ≤ µk2

4
∥xk − x∥2 − µ(k + 1)2

4
∥xk+1 − x∥2 + M2

µ

Proof: It follows from Lemma 2.2 and Assumption A.2 that

2λk[f(xk)− f(x)] ≤ (1− λkµ)∥xk − x∥2 − ∥xk+1 − x∥2 + λ2
kM

2

Now using (1), we have

4[f(xk)− f(x)]

µ(k + 1)
≤

(
1− 2

k + 1

)
∥xk − x∥2 − ∥xk+1 − x∥2 + 4M2

µ2(k + 1)2

≤
(
k − 1

k + 1

)
∥xk − x∥2 − ∥xk+1 − x∥2 + 4M2

µ2(k + 1)2

Multiplying the above inequality by (k + 1)2µ/4, we have

(k + 1)[f(xk)− f(x)] ≤ (k + 1)(k − 1)µ

4
∥xk − x∥2 − (k + 1)2µ

4
∥xk+1 − x∥2 + M2

µ

and hence that the conclusion of the lemma holds.
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Lemma 2.4 Assume that (1) holds and, for any K ≥ 0, define

θK(x) = min
k=0,...,K

[f(xk)− f(x)].

Then,

θK(x) +
µ(K + 1)

2(K + 2)
∥xK+1 − x∥2 ≤ 2M2

µ(K + 2)

Proof: Let K ≥ 0 be given. Then, by Lemma 2.3, we have

(k+1)ΘK(x) ≤ µk2

4
∥xk−x∥2− µ(k + 1)2

4
∥xk+1−x∥2+M2

µ
k = 0, . . . ,K

Adding these inequalities, we have

(K + 2)(K + 1)

2
ΘK(x) ≤ −µ(K + 1)2

4
∥xK+1 − x∥2 + (K + 1)M2

µ
.

The conclusion of the lemma now follows by dividing the above inequality
by (K + 2)(K + 1)/2.

The proof of Proposition 2.1 follows immediately from Lemma 2.4 with
x = x∗.

2.2 Constant stepsize case

By Lemma 2.2 with x = x∗ and λk = λ for all k ≥ 1, have

2λ[f(xk)− f∗] ≤ (1− λµ)∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + λ2M2

Hence,

2λθ∗K ≤ (1− λµ)∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + λ2M2 k = 0, . . . ,K.

Dividing this expression by (1− λµ)k+1, we have

2λθK
(1− λµ)k+1

≤ τk − τk+1 +
λ2M2

(1− λµ)k+1
k = 0, . . . ,K

where

τk :=
∥xk − x∗∥2

(1− λµ)k

Adding the above inequalities, we have

2λθK

K∑
k=0

βk+1 ≤ τ0 − τK+1 + λ2M2
K∑

k=0

βk+1

where β = (1− λµ)−1. Since τ0 = d20, we have

θK ≤ d20 − τK+1

2λ
∑K

k=0 β
k+1

+
λM2

2
≤ d20

2λ
∑K

k=0 β
k+1

+
λM2

2

Now,
K∑

k=0

βk+1 = β
βK+1 − 1

β − 1
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So

θK ≤ (β − 1)d20
2βλ[βK+1 − 1]

+
λM2

2

So, need to choose K such that

(β − 1)d20
2βλ[βK+1 − 1]

≤ ε

2

or

βK+1 ≥ 1 +
(β − 1)d20

βλε

or

(K + 1) log β ≥ log

(
1 +

(β − 1)d20
βλε

)
Now

log β = − log(1− λµ) ≥ λµ

and hence, it suffices to choose K such that

Kλµ ≥ log

(
1 +

(β − 1)d20
βλε

)
or

K ≥ 1

λµ
log

(
1 +

(β − 1)d20
βλε

)
The final complexity is obtained with λ = ε/M2, i.e.,

O
(
M2

εµ
log

(
1 +

(β − 1)d20
βλε

))
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