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1 Inexact proximal point framework

This section presents an inexact proximal point (IPP) framework for solving
the convex optimization problem

ϕ∗ = min{ϕ(x) : x ∈ Rn} (1)

where ϕ ∈ Conv (Rn) and gives general results about the sequence of it-
erates generated by it. Assume that the optimal solution set X∗ of (1) is
nonempty.

IPP Framework

0) τ ≥ 0 and x0 ∈ X is given

1) For k = 1, 2, . . ., do

– choose stepsize λk > 0

– compute (xk, εk) ∈ Rn × R+ such that

vk :=
xk−1 − xk

λk
∈ ∂εkϕ(xk), 2λkεk ≤ ∥xk − xk−1∥2 + 2λkτ

(2)

The main results about the IPP framework are:

Proposition 1.1 Assume that K ≥ 1 and x̄K ∈ conv{x1, . . . , xK} is a
point such that

ϕ(x̄K) ≤ 1

ΛK

K∑
k=1

λkϕ(xk) (3)

where ΛK :=
∑K

k=1 λk. Then,

ϕ(x̄K)− ϕ∗ ≤ d20
2ΛK

+ τ (4)

∥xK − x∗∥2 ≤ ∥x0 − x∗∥2 + 2ΛKτ, ∀x∗ ∈ X∗ (5)
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Proposition 1.2 Let x̄K ∈ conv{x1, . . . , xK} be a point such that (3) holds
and define

v̄K :=
x0 − xK

ΛK
, ε̄K :=

1

2ΛK

(
∥x0 − x̄K∥2 − ∥xK − x̄K∥2

)
+ τ (6)

Then, for every K ≥ 1, we have

v̄K ∈ ∂ε̄Kϕ(x̄K)

and the following bounds hold:

∥v̄K∥ ≤ 2d0
ΛK

+

√
2τ

Λk
, ε̄K ≤ 2d20

ΛK
+ 3τ

Remark: Two immediate examples of x̄K satisfying (3) are:

x̄K =
1

ΛK

K∑
k=1

λkxk

and
x̄K ∈ Argmin {ϕ(x) : x ∈ {x1, . . . , xK}}
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2 Special Instances of the IPP Framework

2.1 Composite Gradient Method

Assume that
ϕ = f + h

where

• h ∈ Conv (Rn)

• f is convex and L-smooth on domh

Consider the following method.

Composite Gradient Method (CGM)

0) Let x0 ∈ X be given

1) For k = 1, 2, . . ., do

xk = argmin

{
ℓf (u;xk−1) + h(u) +

L

2
∥u− xk−1∥2

}
(7)

where
ℓf (u;xk−1) = f(xk−1) + ⟨∇f(xk−1), u− xk−1⟩

We will now show that the CGM is a special case of IPP in which

τ = 0, λk =
1

L
∀k ≥ 1 (8)

The optimality condition for (7) implies that

0 ∈ ∇f(xk−1) + ∂h(xk) + L(xk − xk−1)

It is easy to see that
∇f(xk−1) ∈ ∂εkf(xk)

where

εk = f(xk)− f(xk−1)− ⟨∇f(xk−1), xk − xk−1⟩ = f(xk)− ℓf (xk;xk−1)

Thus, using the two observations above and the fact that λk = 1/L for all
k, we have

xk−1 − xk

λk
= L(xk−1 − xk) ∈ ∇f(xk−1) + ∂h(xk)

⊂ ∂εkf(xk) + ∂h(xk) ⊂ ∂εk(f + h)(xk) = ∂εkϕ(xk)

which shows that the inclusion in (2) holds.
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Second, since f is L-smooth, we have

εk = f(xk)− ℓf (xk;xk−1) ≤
L

2
∥xk − xk−1∥2

and hence

2λkεk =
2εk
L

≤ ∥xk − xk−1∥2

where the equality is due to the fact that λk = 1/L for every k ≥ 1. Hence,
the inequality in (2) holds with τ = 0. We have thus shown that CGM is a
special case of IPP with τ = 0 and λk = 1/L for every k ≥ 1.

Corollary 2.1 For every K ≥ 1, the K-th iterate of CGM satisfies

ϕ(xK)− ϕ∗ ≤ Ld20
2K

Proof: Follows immediately from Proposition 1.1 and the conclusion that
CGM is a special case of IPP with τ and {λk} given by (8).
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2.2 Hybrid Composite Subgradient Method

Assume that
ϕ = f + h

where

• h ∈ Conv (Rn)

• f is convex on domh

• there exists a function s : domh → Rn satisfying the following prop-
erties:

– s(x) ∈ ∂f(x) for all x ∈ domh

– there exist M,L ≥ 0 such that for every x, x′ ∈ domh,

∥s(x)− s(x′)∥ ≤ 2M + L∥x− x′∥ (9)

Lemma 2.2 For every x, x′ ∈ domh, we have

f(x′)− ℓf (x
′;x) ≤ 2M∥x′ − x∥+ L

2
∥x′ − x∥2

where
ℓf (x

′;x) := f(x) + ⟨s(x), x′ − x⟩

Proof: Let x, x′ ∈ domh be given and, for any t ∈ R, define xt := (1 −
t)x + tx′. Then, the integral mean value theorem for subgradients, the
Cauchy-Schwarz inequality, inequality (9) and the definition of xt imply
that

f(x′)− ℓf (x
′;x) = f(x′)− f(x)− ⟨s(x), x′ − x⟩

=

(∫ 1

0

⟨s(xt), x
′ − x⟩dt

)
− ⟨s(x), x′ − x⟩

=

∫ 1

0

⟨s(xt)− s(x), x′ − x⟩dt ≤
∫ 1

0

∥s(xt)− s(x)∥ ∥x′ − x∥dt

(9)

≤ ∥x′ − x∥
∫ 1

0

(2M + L∥xt − x∥) dt

= ∥x′ − x∥
(
2M +

∫ 1

0

Lt∥x′ − x∥dt
)

and hence that the conclusion of the lemma holds
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We now state the hybrid composite subgradient method (H-CSM)

H-CSM

0) Let x0 ∈ X be given and set

λ =
1

L+ 4M2/ε̄
(10)

1) For k = 1, 2, . . ., do

– set sk−1 = s(xk−1)

– compute

xk = argmin

{
ℓf (u;xk−1) + h(u) +

1

2λ
∥u− xk−1∥2

}
(11)

where
ℓf (u;xk−1) := f(xk−1) + ⟨sk−1, u− xk−1⟩

We will now show that the H-CSM is a special case of IPP with

τ = 0, λk =
1

L+ 4M2/ε̄
∀k ≥ 1

First, note that the optimality condition for (7) implies that

0 ∈ sk−1 + ∂h(xk) +
xk − xk−1

λ

It is easy to see that
sk−1 ∈ ∂εkf(xk)

where

εk = f(xk)− f(xk−1)− ⟨sk−1, xk − xk−1⟩ = f(xk)− ℓf (xk;xk−1)

Thus

xk−1 − xk

λ
∈ sk−1 + ∂h(xk) ⊂ ∂εkf(xk) + ∂h(xk)

⊂ ∂εk(f + h)(xk) = ∂εkϕ(xk)

which shows that the inclusion in (2) holds with λk = λ.

Second, we have

εk = f(xk)− ℓf (xk;xk−1) ≤ 2M∥xk − xk−1∥+
L

2
∥xk − xk−1∥2
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Hence

2λεk − ∥xk − xk−1∥2

≤ 4λM∥xk − xk−1∥+ λL∥xk − xk−1∥2 − ∥xk − xk−1∥2

= 4λM∥xk − xk−1∥+ (λL− 1) ∥xk − xk−1∥2

due to (10) = 4λM∥xk − xk−1∥ −
4λM2

ε̄
∥xk − xk−1∥2

≤ 4λM max

{
t− M

ε̄
t2 : t ∈ R

}
= (4λM)

( ε̄

4M

)
= λε̄ (12)

Hence, the inequality in (2) holds with τ = ε̄/2 and λk = λ. We have thus
shown that H-CSM is a special case of IPP with τ = ε̄/2 and λk = λ for
all k ≥ 1 where λ is as in (10).

Corollary 2.3 The sequence of iterates {xk} generated by H-CSM satisfies
the following property: for any K ≥ 1 and any point x̄K ∈ conv{x1, . . . , xK}
such that

ϕ(x̄K) ≤ 1

K

K∑
k=1

f(xk),

there holds

ϕ(x̄K)− ϕ∗ ≤ 1

2K

(
L+

M2

ε̄

)
d20 +

ε̄

2
.

Proof: Since H-CSM is a special case of IPP with τ = ε̄/2 and λk = λ for
all k ≥ 1 where λ is as in (10), it follows from Prop 1.1 that

ϕ(x̄K)− ϕ∗ ≤ d20
2λK

+
ε̄

2
,

and hence that the result holds due to (10).

It follows from the above result that the iteration complexity of H-CSM
to find an iterate xK such that ϕ(xK)− ϕ∗ ≤ ε̄ is

O
((

L

ε̄
+

M2

ε̄2

)
d20

)
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Corollary 2.4 For every K ≥ 1, the K-th triple (x̄K , v̄K , ε̄K) where x̄K

is as in the previous corollary, (v̄K , ε̄K) is given by

v̄K =
x0 − xK

K
, ε̄K =

1

2λK

(
∥x0 − x̄K∥2 − ∥xK − x̄K∥2

)
+

ε̄

2
,

and λ is as in (10), satisfies

v̄K ∈ ∂ε̄Kϕ(x̄K)

and the following bounds hold:

∥v̄K∥ ≤ 2

(
L+

M2

ε̄

)
d0
K

+

√(
L+

M2

ε̄

)
ε̄

K
,

ε̄K ≤ 1

K

[
2

(
L+

M2

ε̄

)
d20

]
+

3ε̄

2
.

It is easy to see that if K = Ω(1/ε̄2) then

max{∥v̄K∥, ε̄K} = O(ε)
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3 Analysis of the IPP framework

Lemma 3.1 For every k ≥ 1 and u ∈ Rn, we have:

ϕ(xk)− ϕ(u) ≤ ⟨vk, xk − u⟩+ εk

Proof: Follows immediately from the fact that vk ∈ ∂εkϕ(xk) and the
definition of the ε-subdifferential.

Lemma 3.2 For every k ≥ 1, we have

2λk[ϕ(xk−1)− ϕ(xk)] ≥ ∥λkvk∥2 − 2λkτ (13)

Proof: Taking u = xk−1 in Lemma 3.1 and noting the definition of vk, we
have

ϕ(xk)− ϕ(xk−1) ≤ − 1

λk
∥xk − xk−1∥2 + εk

and hence

2λk[ϕ(xk)− ϕ(xk−1)] ≤ −2∥xk − xk−1∥2 + 2λkεk ≤ −∥xk − xk−1∥2 + 2λkτ

The conclusion of the lemma now follows from the above inequality and the
definition of vk.

Lemma 3.3 For every k ≥ 1 and u ∈ Rn, we have

2λk[ϕ(xk)− ϕ(u)] ≤ ∥xk−1 − u∥2 − ∥xk − u∥2 + 2λkτ

Proof: Have

∥xk−1 − u∥2 − ∥xk − u∥2 = ∥xk−1 − xk + xk − u∥2 − ∥xk − u∥2

= ∥xk−1 − xk∥2 + 2⟨xk−1 − xk, xk − u⟩
= ∥xk−1 − xk∥2 + 2λk⟨vk, xk − u⟩
≥ ∥xk−1 − xk∥2 + 2λk[ϕ(xk)− ϕ(u)− εk] (Lemma 3.1)

≥ −2λkτ + 2λk[ϕ(xk)− ϕ(u)]

where the last inequality is due to the inequality in (2).

Proposition 3.4 For every K ≥ 1, define

ΛK :=

K∑
k=1

λk. (14)

Then, the following statements hold for every K ≥ 1 and u ∈ Rn:

a) have

2

K∑
k=1

λk[ϕ(xk)− ϕ(u)] ≤ ∥x0 − u∥2 − ∥xK − u∥2 + 2τΛK ;
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b) if x̄K ∈ conv{x1, . . . , xK} is a point such that

ϕ(x̄K) ≤ 1

ΛK

K∑
k=1

λkϕ(xk), (15)

then

ϕ(x̄K)− ϕ(u) ≤ 1

2ΛK

(
∥x0 − u∥2 − ∥xK − u∥2

)
+ τ (16)

Proof: a) This statement follows by summing the inequality in Lemma 3.3
from k = 1 to k = K.

b) This statement follows immediately from a) and assumption (15).

Corollary 3.5 For any K ≥ 1 and any point x̄K ∈ conv{x1, . . . , xK} such
that (15) holds, we have

ϕ(x̄K)− ϕ∗ ≤ d20
2ΛK

+ τ (17)

∥xK − x∗∥2 ≤ ∥x0 − x∗∥2 + 2ΛKτ, ∀x∗ ∈ X∗ (18)

Proof: Inequality (17) follows immediately from Proposition 3.4(b) with
u = ProjX∗

(x0). Moreover, for any x∗ ∈ X∗, (18) follows from Proposi-
tion 3.4(b) with u = x∗ and the fact that ϕ(x̄K) ≥ ϕ(x∗) = ϕ∗.

Corollary 3.6 Let x̄K ∈ conv{x1, . . . , xK} be a point such that (15) holds
and define

v̄K :=
x0 − xK

ΛK

ε̄K :=
1

2ΛK

(
∥x0 − x̄K∥2 − ∥xK − x̄K∥2

)
+ τ

Then, for every K ≥ 1, we have

v̄K ∈ ∂ε̄Kϕ(x̄K) (19)

and the following bounds hold:

∥v̄K∥ ≤ 2d0
ΛK

+

√
2τ

ΛK
, ε̄K ≤ 2d20

ΛK
+ 3τ (20)

Proof: We first show that the inclusion (19) holds. Let AK(u) denote the
right hand side of (16) as a function of u. It is easy to see that AK is an
affine function whose gradient is ∇AK = (x0 − xk)/Λk = v̄K and whose
value at x̄K is ε̄K . Hence,

AK(u) = AK(x̄K) + ⟨∇AK , u− x̄K⟩ = ε̄K + ⟨v̄K , u− x̄K⟩ ∀u ∈ Rn.

It then follows from the above identity and (16) that

ϕ(x̄K)− ϕ(u) ≤ ε̄K + ⟨v̄K , u− x̄K⟩ ∀u ∈ Rn.
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This inequality together with the definition of the ε-subdifferential then
imply that (19) holds.

We will now show that the two bounds in (20) hold. Letting x∗ =
ProjX∗

(x0), and using the triangle inequality for norms and (18), we have
that for every k = 1, . . . ,K,

∥x0 − xk∥ ≤ ∥x0 − x∗∥+ ∥xk − x∗∥

≤ ∥x0 − x∗∥+
√
∥x0 − x∗∥2 + 2Λkτ

≤ d0 +
√

d20 + 2Λkτ ≤ d0 +
√
d20 + 2ΛKτ . (21)

The above inequality with k = K and the definition of v̄K then imply that

∥v̄K∥ =
∥x0 − xK∥

ΛK
≤ d0 +

√
d20 + 2ΛKτ

ΛK
≤ 2d0

ΛK
+

√
2τ

ΛK
,

and hence that the first inequality in (20) holds. Now, the definition of ε̄K
implies that

ε̄K ≤ ∥x0 − x̄K∥2

2ΛK
+ τ

Using the fact that x̄K ∈ conv{x1, . . . , xK} and (21), we easily see that

∥x0 − x̄K∥ ≤ max{∥x0 − xk∥ : k = 1, . . . ,K} ≤ 2d0 +
√

2ΛKτ .

The above two conclusions then imply that

ε̄K − τ ≤ ∥x0 − x̄K∥2

2ΛK
≤

(
d0 +

√
d20 + 2ΛKτ

)2

2ΛK
≤ 2d20 + 2(d20 + 2ΛKτ)

2ΛK
,

and hence that the second inequality in (20) holds.
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