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1 Problem Description and Assumptions
Consider the set optimization problem

fe=min{(f 4+ 0x)(z) : z € R"} = min{f(z) : z € X}

Assumptions:

A1) X C R” is nonempty closed convex and, for some p > 0, function f
is p-strongly convex on X

A.2) there exists M > 0 with the following property: for every z € X,
there exists s(z) € 9f(x) such that ||s(z)|| < M

A.3) optimal solution set X, is nonempty, and hence f, € R

Subgradient Method (SM)

0) zo € X is given
1) For k=0,1,2,...,do

— choose stepsize A\, > 0 and set s, = s(zk)

— compute
Th+1 = PI‘OjX(Ik — )\ksk)

2 Analysis

2.1 Variable stepsize case

This subsection considers the case where the sequence of stepsizes {Ag} is

chosen as 5

Ap — — =
SN

Vk > 0. 1)



Proposition 2.1 Assume that (1) holds and, for any K > 0, define

Ok = Join | [f(zx) = f(2.)):

Then, for every x. € X, we have

u(K +1) 2M?

07 + —— ||z —nP < =

As a consequence, if K > 4M?/(ue) then 03 < e.
The proof of the above result requires a few technical lemmas.

Lemma 2.2 For every k > 0 and x € X, have

22l f (2x) = f(@)] < (1= M) lzw — 2|® = [lopsr — 2 + AZllse ]

Proof: Let x € X be given. Have

[2r1 —z|* = |[Projx (zx — Axsk) — ||
= |[Projx (xx. — Arsk) — Projx (z)|?
< ek — Apsy — =|?
= llan — )® + AZllskll® + 2Ak (sk, @ — )
The result now follows from the fact that

F@) = flaw) = (s, —2) + &l —

Lemma 2.3 Assume that (1) holds. Then, for every k > 1 and x € R™,
we have:

2 2 2
(k4 Dlfon) = F@)] < 2o =l = 2y o2 4

Proof: It follows from Lemma 2.2 and Assumption A.2 that
20 [f (zk) = f(@)] < (L= o) |zg, — 2l|* — [lepsa — 2| + AZM>
Now using (1), we have

Af (z) — f ()] 2 AM?
W < (1 - k+1) ok — $||2 — [|zpy1 — JJHQ + m

< (B o — 22— 2+ M
=\kr1) 7" T T (k1 1)2

Multiplying the above inequality by (k + 1)?1/4, we have

f Tk

IN

k+1)? M?
_x||2_M

(k+DUf (z) = f ()] o —al? + o

and hence that the conclusion of the lemma holds. ]



Lemma 2.4 Assume that (1) holds and, for any K > 0, define

Ok (2) = min [f(zx) = f(2)]-

k=0,...,.K
Then,
w(K +1) 2M?

o4 — 2l <
) (

O @)+ S k2 = WK 12

Proof: Let K > 0 be given. Then, by Lemma 2.3, we have

k2 k4 1)2 M?
(4 D0s(o) < - flow =l = X oy a4 2 k=0 K
Adding these inequalities, we have
K+2)(K+1 K +1)? K +1)M?

The conclusion of the lemma now follows by dividing the above inequality
by (K +2)(K +1)/2. n

The proof of Proposition 2.1 follows immediately from Lemma 2.4 with
T = Ty.

2.2 Constant stepsize case
By Lemma 2.2 with x = z, and A\ = A for all £ > 1, have

AL (an) = £ < (L= M) lag — 2> = ansr — |2 4+ A2M2
Hence,

A0 < (1= M) ||lzg — 24]|® = |opss — 2| + N2M? k=0,..., K.

Dividing this expression by (1 — Au)**!, we have
200k A2 M2
—_— <7 — — k=0,... K
@ = yrrt = Tk 7 TR gy oo
where )
k=l
(1= Ap)*
Adding the above inequalities, we have
K K
2)\9[( ZBk"ﬁ‘l S To — TK 41 + )\2M2 Zﬁk-‘rl
k=0 k=0
where 3 = (1 — Au)~L. Since 79 = d3, we have
d(z) — TK+1 )\]\42 d% )\]\42

Ok < < +
K 2\ EkK:O Bh+1 2 2\ ZkK:o Bh+1 2

Now,
K+1 _ 1

- 8
k+1 _
kzzoﬁ =85



So
(8 —1)dg AM?
Ox < BABET —1] T 2

So, need to choose K such that

(8 —1)dj
2BA[BEH —1]

£
<z
-2

or
(8 —1)dg

K+l >
B >1+ e

or

a2
(K +1)log s > log (1+(B5/\15)d0>

Now
log B = —log(1 — Au) > Au
and hence, it suffices to choose K such that

—1)d?
KX\ > log (1 + (ﬂmg)o)

or

BAe
The final complexity is obtained with A\ = &/M?, i.e.,

a2 (5~ 1)
oG (1 52%))

K2110g<1+(51)d(2)>
Ap



