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1 Inexact proximal point framework

This section presents an inexact proximal point (IPP) framework for solving
the convex optimization problem

¢« = min{¢p(x) : x € R"} (1)

where ¢ € Conv (R™) and gives general results about the sequence of it-
erates generated by it. Assume that the optimal solution set X, of (1) is
nonempty.

IPP Framework

0) 7> 0 and zg € X is given
1) For k=1,2,..., do

— choose stepsize A\ > 0
— compute (zg,er) € R" x Ry such that

Th1— X
v, 1= % € 0., 0(xr), 2Mek < llon — wp—1|® + 2\eT
(2)
The main results about the IPP framework are:
Proposition 1.1 Assume that K > 1 and Tx € conv{zy,...,xx} is a
point such that
| K
Bix) < = 3 M) 3)
Ak i
where A 1= Zszl Ai. Then,
P(Tk) — b« < i + (4)
Tr) — Oy T
K — 2Ak
lzr — 2. < |lzo — z4||* 4+ 2AK T, Vo, € X, (5)



Proposition 1.2 LetTx € conv{z1,...,xx} be a point such that (3) holds
and define

B Ty — TK _ 1 - =
i i= L g im (oo - 2k~ ok — k) £ 7 (6)

Then, for every K > 1, we have

VK € ae—K(b(i‘K)

and the following bounds hold:

Remark: Two immediate examples of Zx satisfying (3) are:

1 K
T = E;Akxk

and
Tx € Argmin {¢(z) : x € {z1,...,2K}}



2 Special Instances of the IPP Framework

2.1 Composite Gradient Method

Assume that

6=f+h

where
e 1 € Conv (R™)

e f is convex and L-smooth on dom h

Consider the following method.

Composite Gradient Method (CGM)

0) Let 2y € X be given
1) Fork=1,2,..., do

. L
o = angmin {65 0) + )+ Flu -zl (@)

where
Cp(us 1) = f(zr—1) +(Vf(@Tr-1),u — p_1)

We will now show that the CGM is a special case of IPP in which

1
T=0, A=7 Vhk=1 (8)

The optimality condition for (7) implies that
0€ Vf(xg—1)+ Oh(xyk) + L(xk — xp—1)

It is easy to see that

Vf(@k-1) € O, f(ak)
where
er = fzr) — f(wr—1) = (Vf(@p-1), 2 — xp—1) = f(ar) — Lp(@p; Tr—1)

Thus, using the two observations above and the fact that Ay = 1/L for all
k, we have

T_1 — T

5 = L(xp—1 — xx) € Vf(xp_1) + Oh(xy)
k

C askf(xk) + ah(xk) c aﬁk(f + h)(xk) = 8€k¢($k)

which shows that the inclusion in (2) holds.



Second, since f is L-smooth, we have

L
er = flag) — Lp(xp; zp—1) < 5||$k — zp_q|?
and hence 5
5
2Mker = Tk < |lwg — p_1 |

where the equality is due to the fact that A\, = 1/L for every k > 1. Hence,
the inequality in (2) holds with 7 = 0. We have thus shown that CGM is a
special case of IPP with 7 = 0 and Ay = 1/L for every k > 1.

Corollary 2.1 For every K > 1, the K-th iterate of CGM satisfies
Ld3
— P, < =Y
P(rK) — s < Yee

Proof: Follows immediately from Proposition 1.1 and the conclusion that
CGM is a special case of IPP with 7 and {\;} given by (8). ]



2.2 Hybrid Composite Subgradient Method

Assume that
o=f+h

where
e h € Conv (R™)
e f is convex on dom h

e there exists a function s : dom h — R"™ satisfying the following prop-
erties:

— s(z) € 0f(x) for all x € domh
— there exist M, L > 0 such that for every z,z’ € dom h,

Is(x) = s(2')| < 2M + L||z — 2| 9)

Lemma 2.2 For every x,z' € dom h, we have
/ / / L / 2
f@) = Lp(ahs2) < 2M 2" — 2f| + S [|2" — 2]

where
ly(a'sw) o= f(2) + (s(x), 2" —x)

Proof: Let z,2’ € domh be given and, for any ¢ € R, define z; := (1 —
t)x + tz’. Then, the integral mean value theorem for subgradients, the
Cauchy-Schwarz inequality, inequality (9) and the definition of z; imply
that

f@) =L@y 2) = f(@) = f(z) = (s(x), 2 — )

_ </01<s(xt),x’ _ x)dt) —(s(a), 2 — )

- / (s(z0) — s(x), 2’ — z)dt < / () — (@)l 12' — lldt

© !
2l —xH/O (2M + Lz — o)) dt

1
= ||’ — 2| (2M+/ Lt||2" — l‘”dt)
0

and hence that the conclusion of the lemma holds n



We now state the hybrid composite subgradient method (H-CSM)

H-CSM

0) Let zp € X be given and set

1

A= L +4M?/e

(10)

1) For k=1,2,...,do

— set sg—1 = s(Tk-1)

— compute
. 1 2
xp = argmin < £y (u;zk—1) + h(u) + ﬁHu —xp_1|| (11)

where
Cr(uszp—1) = f(@p—1) + (Sp—1,% — Tp—1)

We will now show that the H-CSM is a special case of IPP with

1

=0, M=—
TEY T T aME

Vk>1
First, note that the optimality condition for (7) implies that

— Tk—1

0 € sg—1+ Oh(xzk) + Tk \

It is easy to see that
sk—1 € Oc, f (k)

where
er = f(zx) — f(wp—1) — (Sk—1, 76 — Tp—1) = for) — Ly(Tr; Th—1)
Thus

w € sp_1 + Oh(xx) C 0., f(xr) + Oh(ay)

C O, (f + h)(xn) = Oz, P(xk)
which shows that the inclusion in (2) holds with A\, = A.

Second, we have

L
ep = flag) — Lp(ar; xp—1) < 2M||z — -1 || + §||5Uk — x|



Hence

2Xer — |12k — 1)
< M ||zg — x| + ALllex — 2 |* — o — 21
= AA\M ||zi, — zp—1|| + AL = 1) [lzg — 2p—1 ||
4\M?

:4)\Mka —l‘]g_1|| - z Hl'k _xk—1||2

due to (10)

M
§4)\Mmax{t— ?R :teR}
(12)

3
(4\M) i AE
Hence, the inequality in (2) holds with 7 = £/2 and A\, = A\. We have thus
shown that H-CSM is a special case of IPP with 7 = £/2 and A\, = A for

all k£ > 1 where A is as in (10).

Corollary 2.3 The sequence of iterates {x} generated by H-CSM satisfies
the following property: for any K > 1 and any point Tk € conv{xy,..., Tk}

such that
1 X
k=1
there holds . A2 -
r) o< b (0 M)y E
O(Tr) — ¢ _2K< + 6)do+2

Proof: Since H-CSM is a special case of IPP with 7 = &/2 and Ay = A for
all k£ > 1 where A is as in (10), it follows from Prop 1.1 that
3 €

= 0

and hence that the result holds due to (10).

It follows from the above result that the iteration complexity of H-CSM
to find an iterate xx such that ¢(xx) — ¢ < & is

o((£+)4)



Corollary 2.4 For every K > 1, the K-th triple (Tx,Uk,Ex) where Tx

is as in the previous corollary, (Vi ,&x) is given by
_ Ty — T _ ~ 2 — o2y . &
UK = T o EK:W(HxO_xKH — vk — 7k || )+§7

and X is as in (10), satisfies
Uk € Oz 0(TK)

and the following bounds hold:
M2\ dy M2\ ¢
k|| <2(L+— | — L+— ) —=
||UK||_<+E_>K+ (+5>K’
1 M2\ , 3
2<L+€>d0:|+2.

It is easy to see that if K = (1/£%) then
max{||vx |, x} = O(e)



3 Analysis of the IPP framework
Lemma 3.1 For every k > 1 and u € R™, we have:
P(xr) — ¢(u) < (vk, T — u) + &,

Proof: Follows immediately from the fact that vy € 0., ¢(xx) and the
definition of the e-subdifferential. (]

Lemma 3.2 For every k > 1, we have

2Xk[d(zr—1) — ¢(x)] = [ Akvill® — 2M7 (13)
Proof: Taking u = xj_1 in Lemma 3.1 and noting the definition of vy, we
have
1 2
d(ay) — drp—1) < _Ykak — Tp—1||* + e
and hence

[o(xr) — d(zp_1)] < =2||lzk — Tp—1]|® + 2hner < —|lzk — 2p_1]|? + 207

The conclusion of the lemma now follows from the above inequality and the
definition of vy. n

Lemma 3.3 For every k > 1 and u € R™, we have
20[p(xr) — d(w)] < |lp—1 — ull® = [lar — ul]® + 2M7
Proof: Have

lzp—1 = ull® = llog = ull? = [log—1 — 2k + 25 — u]|® = |2, — u|?
= ||xk71 - kaZ + 2<1'k71 — T, Tl — u>

= lzr—1 — zil|* + 2\ vk, 21 — w)

> \lzp_1 — 2l + 20 [p(2zr) — d(u) —ex]  (Lemma 3.1)
> =207 + 20, [B(zx) — B(u)]
where the last inequality is due to the inequality in (2). L]

Proposition 3.4 For every K > 1, define

K
Ak =Y A (14)
k=1

Then, the following statements hold for every K > 1 and u € R":

a) have

K
2 Milb(ar) = d(w)] < llzo — ull® = ok — ull® + 27Ax;
k=1



b) if Tk € conv{zy,...,Tx} is a point such that

_ 1«
P(Tk) < e ; Aed(zk), (15)
then
¢(Tx) — d(u) < M (lzo —ull® = ok —ull?) + 7 (16)

Proof: a) This statement follows by summing the inequality in Lemma 3.3
fromk=1to k=K.
b) This statement follows immediately from a) and assumption (15). m

Corollary 3.5 For any K > 1 and any point T € conv{zy,...,xx} such
that (15) holds, we have

dg
) — b < 1
M)~ 6, < gt 7 (17)
lzr — 2. < ||zo — z4||* 4+ 2AK T, Vo, € X (18)

Proof: Inequality (17) follows immediately from Proposition 3.4(b) with
u = Projx_(xo). Moreover, for any z, € X,, (18) follows from Proposi-
tion 3.4(b) with u = z, and the fact that ¢(Tx) > d(z4) = Px. ]

Corollary 3.6 Let Zx € conv{zy,...,xx} be a point such that (15) holds
and define

_ To —TK
Vg 1= ————
K A
1
£ 1= —— (on —ZTg|? = |lrx — iK||2) + 7
2A

Then, for every K > 1, we have
Vg € 8§K¢(§7K) (19)

and the following bounds hold:

+37 (20)

_ 243
Il < T2+ 1o e <
K K K

Proof: We first show that the inclusion (19) holds. Let Ak (u) denote the
right hand side of (16) as a function of u. It is easy to see that Ag is an
affine function whose gradient is VAx = (29 — 2x)/Ar = Uk and whose
value at Tg is €. Hence,

Ag(u) = Ax(Tg) + (VAk,u — Tx) =€k + (Uk,u — Tg) Yu€R"™.
It then follows from the above identity and (16) that

O(Tr) — Pp(u) <& + (g, u—Tg) YueR".

10



This inequality together with the definition of the e-subdifferential then
imply that (19) holds.

We will now show that the two bounds in (20) hold. Letting x, =
Projy, (xo), and using the triangle inequality for norms and (18), we have
that for every k=1,..., K,

2o = @il < [lwo — e[| + [k — 24

< llwo = ]| + v/llzo — 24[|? + 27

Sd0+\/d%+2Ak~TSd0+\/d%+2AKT. (21)

The above inequality with £ = K and the definition of vk then imply that

_ /72
B ||ajo ngH < d0—|— io +2AKT < 2d0 i 2T
K

||UK|| = AK = = E AK7

and hence that the first inequality in (20) holds. Now, the definition of Zx
implies that
a2
- Nz
2A K

Using the fact that Zx € conv{xy,...,zx} and (21), we easily see that

+ 7

||.’L'() —i‘KH < max{on —.Z‘kH k= 1,...,K} < 2do + \/2AkT.

The above two conclusions then imply that

2
_ _ lwo—zk® _ (do +Vdg + 2AKT) _ 23+ 2(d3 + 2Ak7)
Ex — T
K70 =", -~ 2\ = 2 ’
and hence that the second inequality in (20) holds. m

11



