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1 Unaccelerated CGMs

1.1 Problem description and assumptions

Consider the problem
ϕ∗ = min

z∈Rn
ϕ(z) := f(z) + h(z) (1)

where

A1) h ∈ Conv (Rn);

A2) there exists L > 0 such that f is L-smooth on domh, i.e., f is differentiable
on domh and

∥∇f(z̃)−∇f(z)∥ ≤ ∥z̃ − z∥, ∀z, z̃ ∈ domh (2)

A3) f is nonconvex.

Hence,

−M

2
∥z̃ − z∥2 ≤ f(z̃)− ℓf (z̃; z) ≤

M

2
∥z̃ − z∥2, ∀z, z̃ ∈ domh

where
ℓf (·; z) := f(z) + ⟨∇f(z), · − z⟩ ∀z ∈ domh

Optimality for (1): If x̄ is an local minimum of (1), then

0 ∈ ∇f(x̄) + ∂h(x̄) (3)

A point x̄ ∈ Rn satisfying (3) is called a stationary point of (1)

Hence, every local min of (1) is a stationary point of (1) but the reverse is not
necessarily true.
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The method below is the composite gradient method (CGM) for solving (1).

Algorithm 1 Composite Gradient Method (CGM)

0. Let initial point x0 ∈ domh and λ ∈ (0, 2/M) be given and set k = 1
1. Compute

xk ∈ argmin x

{
ℓf (x;xk−1) + h(x) +

1

2λ
∥x− xk−1∥2

}
(4)

2. Set k ← k + 1 and go to step 1

Lemma 1.1. For every k ≥ 1, the vector vk ∈ Rn defined as

vk :=
1

λ
(xk−1 − xk) +∇f(xk)−∇f(xk−1)

satisfies
vk ∈ ∇f(xk) + ∂h(xk)

and

∥vk∥ ≤
(
1 + λL

λ

)
∥xk − xk−1∥

Proof: The optimality condition for (4) implies that

0 ∈ ∇f(xk−1) + ∂h(xk) +
1

λ
(xk − xk−1)

The inclusion in the conclusion of the lemma now follows from the above inclusion
and the definition of vk. Moreover, the definition of vk and the triangle inequality
imply

∥vk∥ ≤ λ−1 ∥xk−1 − xk∥+ ∥∇f(xk)−∇f(xk−1)∥ ≤
(
λ−1 + L

)
∥xk − xk−1∥

where the last inequality is due to (6). Hence, the inequality in the conclusion of
the lemma follows.

The size of vk then tells us how good xk is as an approximate stationary solution
of (1)

Definition: x ∈ domh is said to be a ρ-stationary solution of (1) if there exists
v ∈ Rn such that

v ∈ ∇f(x) + ∂h(x), ∥v∥ ≤ ρ

Note that the pair (x, v) = (xk, vk) generated by CGM satisfies the above inclusion.
The question that remains is: how many iterations does CGM need to perform in
order to generate a ρ-stationary solution? To answer this question, we will analyze
below how ∥vk∥ behaves.
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Lemma 1.2. For every k ≥ 1 and x ∈ Rn, have

ℓf (x;xk−1) + h(x) +
1

2λ
∥x− xk−1∥2 −

1

2λ
∥x− xk∥2

≥ ℓf (xk;xk−1) + h(xk) +
1

2λ
∥xk − xk−1∥2

Proof: Follows from the popular basic convex analysis result.

Lemma 1.3. For every k ≥ 1, have

ϕ(xk−1)− ϕ(xk) ≥
(
1

λ
− M

2

)
∥xk − xk−1∥2 ≥ 0

Proof: The first inequality follows from Lemma 1.2 with x = xk−1 and the fact
that, for every x ∈ Rn, we have ℓf (x;x) = f(x) and

ℓf (x;xk−1) ≥ f(x)− M

2
∥x− xk−1∥2

The second inequality of the lemma follows from the assumption that λ ∈ (0, 2/M)
and hence 1/λ > M/2
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Lemma 1.4. For every K ≥ 1 and l ∈ {0, . . . ,K − 1}, have

ϕ(xl)− ϕ(xK) ≥ λ(2− λM)

2(1 + λM)2

K∑
k=l+1

∥vk∥2

As a consequence,

ϕ(xl)− ϕ ≥ λ(2− λM)

2(1 + λM)2

K∑
k=l+1

∥vk∥2

Proof: Summing the inequality of Lemma 1.4 from k = l + 1 to k = K, we have

ϕ(xl)− ϕ(xK) ≥
(
2− λM

2λ

) K∑
k=l+1

∥xk − xk−1∥2

≥
(
2− λM

2λ

)
λ2

(1 + λL)2

K∑
k=l+1

∥vk∥2

where the last inequality is due to Lemma 1.1. Hence, the lemma follows.

Proposition 1.5. Assume that the sequence {ϕ(xk)} is bounded below by ϕ. Then,
for every K ≥ 1,

min
1≤k≤K

∥vk∥2 ≤
[
2(1 + λL)2

λ(2− λM)

](
ϕ(x0)− ϕ

K

)
Proof: Follows immediately from the previous lemma with l = 0.

Consequence: The complexity to obtain a ρ-stationary point x = xk (i.e., a point
x such that

v ∈ ∂f(x) + ∂h(x)

for some v ∈ Rn satisfying ∥v∥ ≤ ρ) is

O
(
ϕ(x0)− ϕ

λρ2

)

Under some assumptions, we will next show that

min
1≤k≤K

∥vk∥2 ≤ O

(
mMD2

K
+

M2d20
K2

)
where m is a weakly convex parameter for f over domh
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1.2 Alternative complexity bound

For this subsection, assume that

A1) h ∈ Conv (Rn) and domh is bounded;

A2) f is differentiable on domh and there exist m,M > 0 such that

−m

2
∥z̃ − z∥2 ≤ f(z̃)− ℓf (z̃; z) ≤

M

2
∥z̃ − z∥2, ∀z, z̃ ∈ domh (5)

A3) f is nonconvex.

It can be shown that (5) implies that f(·)+(m/2)∥ · ∥2 is convex on domh and that

∥∇f(z̃)−∇f(z)∥ ≤ L∥z̃ − z∥, ∀z, z̃ ∈ domh (6)

where
L := max{m,M}.

It can be shown that the set of optimal solutions X∗ of (1) is nonempty.
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Lemma 1.6. Assume that λ ∈ (0, 1/M ]. Then, for every k ≥ 1 and x∗ ∈ X∗, have

1

2λ

(
∥xk−1 − x∗∥2 − ∥xk − x∗∥2

)
+

m

2
∥xk−1 − x∗∥2 ≥ ϕ(xk)− ϕ(x∗)

Proof: Lemma 1.2 with x = x∗ yields

1

2λ
∥x∗ − xk−1∥2 −

1

2λ
∥x∗ − xk∥2

≥ ℓf (xk;xk−1) + h(xk) +
1

2λ
∥xk − xk−1∥2 − ℓf (x∗;xk−1)− h(x∗)

≥ ϕ(xk) +
λ−1 −M

2
∥xk − xk−1∥2 − ℓf (x∗;xk−1)− h(x∗)

≥ ϕ(xk) +
λ−1 −M

2
∥xk − xk−1∥2 − ϕ(x∗)−

m

2
∥x∗ − xk−1∥2

wehere the second and third inequality is due to (5)

Lemma 1.7. For every K > k ≥ 0,

ϕ(xk)− ϕ(x∗) ≥
λ(2− λM)

2(1 + λL)2

K∑
k=k+1

∥vk∥2

Proof: Follows immediately from Lemma 1.4 with l = k and ϕ = ϕ(x∗)

Lemma 1.8. For every K ≥ 0,

ΘK ≤
(1 + λL)2

(2− λM)

(
d20

λ2K(K − 1)
+

2mD2

λ(K − 1)

)
where

ΘK := min
1≤k≤K

∥vk∥2, D := sup{∥x− x′∥ : x, x′ ∈ domh}

Proof: Let x∗ be the closest point to x0 in X∗. It follows from the previous lemma
that

λ(2− λM)

2(1 + λL)2
(K − k)ΘK ≤ ϕ(xk)− ϕ(x∗)

≤ 1

2λ

(
∥xk−1 − x∗∥2 − ∥xk − x∗∥2

)
+

m

2
∥xk−1 − x∗∥2

≤ 1

2λ

(
∥xk−1 − x∗∥2 − ∥xk − x∗∥2

)
+

mD2

2

where the second inequality is due to Lemma 1.6 and the last one is due to the
definition of D. Summing the above inequality from k = 1 to k = K, we conclude
that

λ(2− λM)

2(1 + λL)2
K(K − 1)

2
ΘK ≤

1

2λ
∥x0 − x∗∥2 +

m

2
KD2.

and hence that the conclusion of the lemma holds.
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Hence, if λ = 1/M , have

ΘK = O
(

L2d20
K(K − 1)

+
mL2D2

M(K − 1)

)
and the complexity of finding a ρ-stationary point of (1) is

O
(
Ld0
ρ

+
mL2D2

Mρ2

)
Under the assumption that M ≥ m, and hence L = M , the above bound becomes

O
(
Md0
ρ

+
mMD2

ρ2

)

Exercise: Derive an iteration-complexity bound close to the one above for the case
where λ ∈ (0, 2/M ]

Next lecture, we will present an accelerated CGM whose complexity is

O

([
Md0
ρ

]2/3
+

mMD2

ρ2
+

√
mMD2

ρ2

)
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