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1 Convex Case

1.1 The problem and assumptions
Consider the composite problem

¢. =min ¢(z) = f(z) + h(z)
s.t. x € R"

where:
1) h € Conv (R")

2) f is convex on dom A (and hence dom f O dom h);

4) the set X, of optimal solutions is nonempty (and hence
o« € R).

)
3) there exists L > 0 such that f is L-smooth on dom h
)



Motivation Let us now motivate the class of methods we are
interested in studying in this section. Given A > 0 and x,y €
R", we want to find AT > A and z*,y" € R" such that

() = A [oy*) — o(w)] + 5llu— a7

< Al8(y) — o)) + glu— 2l = n(u) VueR" ()

Using the above construction, we can then generate a sequence
{(zg, yp, Ax)} C R" x R™ x R, such that the quantity

() = Axlpls) — 6(u)] + 5l — el

satisfies
Nev1(w) < me(u) VE >0, Yu € R™

As a consequence, we have
ne(u) < mo(u) Vk >0, Vu € R,

and thus

O(yr)—d(u) < — [d(yo) — ¢(U)]+2LAkHu—xOH2 Vk > 0, Yu € R™

If Ay is chosen to be zero, then

1
d(ye) — p(u) < —||lu — zol]* VE >0, uecR"
24,

In particular, taking u = Pry, (z¢), we conclude that
2

d
_ < 20 >
6() = 6. < 50 Yk 20

where dy := min{||z, — zo|| : z. € X, }.

Hence, the larger Ay grows, the faster the primal gap ¢(yx) — ¢
approaches zero.



Let us now give a sufficient condition for (1) to hold.

Lemma 1.1. Assume that yt € R", AT > A, and~y € Conv (R"),
satisfy

v< ¢ (2)

A6y < 200 + min far) + glu -l } )
where a := AT — A, and define
" = argmin {a'y(u) + %Hu — x||2} : (4)
Then, (z*,y*, AT) satisfies (1).
Proof: Let

6 := min {cw(u) + %Hu — x||2}

Since z is the optimal solution of the above problem, we have
that for every u € R,

1 1
AB(y) + ar(w) + Sl — 2> = Ad(y) + 0+ 5llu — o+

> Ato(y") il

— :17+||2.
2

Ju
The above inequality then implies that
ATIB(y) — b)) + gl —
(since a = A"~ A) < A[p(y) ~ 6w)] + aly(u) — 6(u)] + 3 lu —
(since a > 0 and 5 < 6) = A[o(y) — 6(u)] + 5llu —

and hence that the conclusion of the lemma holds. m



From now on, we will focus on:

Goal: Given (z,y,A), find y*, AT > A and v < ¢ satisfying
condition (3).

Lemma 1.2. Let a > 0 and v € Conv (R") such that v < ¢ be

giwven and define

Ay + ax™
A+a

Ay + ax
A+a

Y= , T=

where " is as in (4). Then

A+
2a2

a. . .
17— 2I1*| -

A0(5) + min {ar ) + 5l ol | 2 (4-+.0) (@) +

Proof: First observe that the definitions of  and ¢ imply that

a
~_~ — +
15 -3l =

For every a > 0, have

Ao(y)+min {ar (1) + S~ o]}
(definition of z* in (4)) :44¢@D—+aq(x+)+—%H$+——xH2
(since y < 6) > Ay(y) + ar(a®) + 5l —
(convexity of v) > (A+a)y (MA—F——I—CZI;JF) + %Hfr —z|?
(definition of §) = (A+a)~v(79) + %Hﬁ —z|?
The conclusion of the lemma now follows by combining the above

two relations.

Corollary 1.3. In addition to the assumptions of Lemma 1.2, assume also
that y* € R™ is a point such that

A4+a, . _9
g 7]

()

and set AT = A+a. Then, (y*, AT,v) satisfy (3), and hence (z,y™, AT)
satisfies (1).

o(y™) < () +

Proof: The first conclusion follows immediately from Lemma 1.2 while the
second one follows from Lemma 1.1.



1.2 First ACG variant (Atouch and Teboule)

This variant chooses a > 0 such that

A
+a _ I
a2
and sets
y =9, () =L;(53) +h()
Then,
. A+a, . N L, ..
V(@) + 5z 19— 2" =) + 51§ -2

=2yt + 2yt — 3
= l(yta) +hyt) + Syt — 2
> (f+h)(y") =o(y™)

Remark: Instead of setting y* = ¢, we can instead choose y™*
such that
L, . L _
V@) + 515 2° =) + Syt -3
e.g., y* given by
+ : ~ L ~ 112
y* =argmin < {;(u; Z) + h(u) + §||u —Z|| (6)

The latter variant is more expensive since it solves two subprob-
lems per iteration, namely, subproblems (4) and (6).



Algorithm 1 (AT-ACG variant)

0. Let xg € domh be given, and set yy = xg, Ag = 0, and
k = 0;

1. Compute
1+ vV 1+ 4LAk - Akyk + apTy
a = N ST (7)
2L Ak + ag
2. Compute

. N 1
Tpyq = argmin {ak[éf(u;xk) + h(u)] + §||u — xk||2} , (8)

u€dom h
Aryr + apTp41
= 9
Yk+1 A+ ar ( )
Api1 = A + a; (10)

3. Set k < k+ 1 and go to step 1.

Obs: Formula for aj and Ay in (7) imply that

Apyr A+ ag
==L (11)

==
ag ag,

Question: How fast does A, grow?

14++/4LA 1 [A
ay > ST VELA > — + Zk
2L 2L L
and so

2
1 [A, 1 /1
Ak+1 Ak—f-ak_QL—l— 7 +Ak;_ (\/Ak+2 L)

Hence

Have

VA1 > VAR + %\/%

This implies that

k /1 k /1
VA Vb5 T
k2

and hence that

Ay > —
"= uL
Hence, the convergence rate of the AT-variant is
d? 2Ld2
— 6, < 9 <
P(yk) — ¢« < oA, =



1.3 Second ACG variant (FISTA)

This variant was originally proposed by Nesterov for set opti-
mization problems and later extended by Teboule et al to com-
posite optimization problems.

While the AT variant solves a composite subproblem for x4
and obtains y;, 1 in a straightforward manner, the FISTA variant
below solves a composite subproblem for y;,; and easily obtains

Tpi1-

Algorithm 2 (FISTA)
0. Let xg € domh be given, and set yy = z9, Ag = 0, and
k=0;

1. Compute
1++1+4LA, - Aryr + apxy
ap = s Tpy= (12)
2L Ak + ag
2. Compute

. . L .
Y1 1= argmin {Zf(x;xk) + h(x) + EHx — xk||2} , (13)

xedom h
Tpy1 = T + Lag(Yrg1 — Ti), (14)
A1 = A + a; (15)

3. Set k < k+ 1 and go to step 1.

The justification of this variant relies on choosing
YO =W+ LE-y", —y") (16)

where for this section we let

V() =€y (T) + h()
Clearly,

- L -

STORS= IEE K6
and, by (13), have

L
o = anguin {300) + 5 - 311 |

Lemma 1.4. Affine function v(-) defined in (16) satisfies

V) =00 A0 <30, o = argmin {o(0) + 5 - 312}

Proof: Exercise



Using the above lemma, let us verify that (5) holds. Indeed,

o\ A+a, . 5 L
VG +— 5117 = 27 = 7(9) + 51y - 2|
. L . L -
> win {5 (u) + = 31? } =26) + 5l - P
oty Ly e -
=30") + S lly" =27 = o(y™)

showing that (5) holds.
Moreover, by (14), we have

v =x+al(yt —7)
Hence, the definition of the affine function v implies that

" =12 —aVy

which is the optimality condition for z* to be optimal for the
subproblem in (4). We have thus shown that x* in (14) satisfies

(4).



Alternative description of FISTA

Lemma 1.5. There holds:
LAY - Ay
- .

T

Proof: Have

Ay + ax

T = LiyT — %) = Ly ——=——
x r+al(ly" —%)=xz+a (y A+a)
A+a(+ Ay—l—ax) AtyT — Ay
y — = .

-t A+a

a

Lemma 1.6. There holds:

. 1
it =yt + = D(y* —v)
where m
t=—=0alL >1
a
Proof: Have
F+ " at

_ +
- A++y +A++x

+ + +ot
L at a ATyt — Ay
ARG I

at (AT
=y++F(7—1)(y+—y)

=y + té(t - D(y* —v).

Lemma 1.7. There holds:

tt)?2 -t —* =0,

and hence
o 1++/1+ 4¢2
= 5 )
Proof:
A+ /AT A+ AF
+12 + _ _
A+
= LAY = (La)— =t~
a



Algorithm 3 (FISTA-revisted)

0. Let yg € domh be given, and set o = yo, top = 1, and
k = 0;
1. Compute

. . L .
Ypy1 := argmin {ff(x; Zy) + h(z) + EHQJ - 5UkH2} . (1)

r€dom h

and then set

lg41 =

1+ /144t
2

i — 1

Treg1

Tht1 = Y1 + (Y1 — Un)

3. Set k <+ k+ 1 and go to step 1.

Remarks:

e Extrapolated composite gradient method

e Somewhat related to the heavy ball method (due to Polyak)
where y;11 is computed as in (17) and

Tr1 = Y1 + BTk — Ti—1)

for some scalar 3 > 0.

10



2 Strongly convex case

2.1 The problem and assumptions

Consider the composite problem

(P) ¢« =min ¢(z) = f(z) + h(z)
s.t. z € R"

where:
1) h € Conv, (R") for some u > 0;
2) f:R™ — R is convex everywhere;
3) there exists L > 0 such that f is L-smooth everywhere;
)

4) the set X, of optimal solutions of (P) is nonempty (and
hence ¢, € R).

11



Motivation: Given A > 0 and 7 > 0, and x,y € R", suppose
we can always find AT > A, 77 > 7, and 21, y" € R" such that

7 (W) = A" [o(5") - 6] + T flu— o P

< Alb(y) — o) + Sllu—al® = nw) VueR" (18)

Using the above construction, we can then generate an infinite
sequence {(zx, Yk, Ak, 76)} C R" x R" x Ry x R, such that the
quantity

M) = A [6(ge) = o)) + 7 llu — i

satisfies
no(u) > nr(u) Yk >0, ueR"

Dividing this inequality by A, yields

22 [6(yo) — ()] + ;—jkuu — o]

If Ay and 7y are chosen to be zero and one, respectively, then

1
S(yr) — ¢(u) < 5 llu—xol* V>0, ueR",
24},

In particular, taking v = Projx, (z¢), we conclude that

d2
— < 0 >

where dy := min{||z, — x| : . € X, }.

Hence, the larger Ay grows, the faster the primal gap ¢(yx) — ¢
approaches zero.

12



Proposition 2.1. Let (z,y,A,7) € R" x R" x R, x Ry, be
given and assume that (y*,7(-),a) € R" x Conv, (R") x Ry,
satisfies the KEY condition that

o, T(A+a), .
y<o o) <)+ g -ap o)
where
. Aytart  _ Aytax
T T
and

AT :=A+a, z7:=argmin {av(u) + gHu — :v||2} . (20)
Then, the quadruple (z*,y™, AT, 77) where
Ty =T+ ap (21)
satisfies
+ + + T +12
7 (W) = A [oly*) - o)) + o Ju— |

< Aloly) = o(w)] + lu - 2” = nw) VueR" (22)

Proof: First observe that the definitions of  and gy imply that

a +
- 2
T (23

19—zl =

For every a > 0, have
Ag(y) + min {ay(u) + |lu— o}
(definition of z) = A¢(y) + ay(z™) + g||$+ — x|
(since y < ¢) > Ay(y) +ay(a™) + Slla* — x|

Ay + ax™ T 4 9
“Ava ) el

(definition of §) > (A+a)y(y) + ng’L — x|

(equation (23)) = (4-+) [+(3) + "5 5 - 4l

(convexity of v) > (A+a)y (

(equation (19)) > (A +a)p(y™)
(def of AT) = ATg(y™)
This inequality together with the assumption that v(-) € Conv, (R")
yield

Ad(y) + ar(u) + Zllu — 2> = Ato(yt) + L

2
+
= A%9(y") + -t —

o — ul®

13



where the last equality is due the the definition of 77 in (21).
Now, using the assumption that v < ¢ and the definition of A"
in (20), we easily see that the above relation implies (22). n

14



2.2 First ACG variant (Atouch and Teboule)

This variant chooses a > 0 such that

and sets
y" =9, () =Ls(Z) + h(-) € Conv, (R")
Then, v < ¢ and

T(A+ a)
2a2

1(@) + 19— 2 =2(5) + 215 - 2
= 2y*) + gy P
= (8 + ) + Sy -
> (f+h) (") =o(y")

Instead of y* = ¢, we can instead choose y* such that
R L B
1@ + 15— FH 2 90 + - F?
e.g., yT given by
+ ' . L =12
y" = argmin < {¢(u; T) + h(u) + §||u — I (24)

The latter variant is more expensive since it solves two subprob-
lems per iteration, namely, subproblems (20) and (24).

15



Algorithm 4 (AT-ACG variant)

0. Let x¢ € dom h be given, and set yg = xg, Ag =0, 79 = 1,
and k£ = 0;

1. Compute
/T2 + 4L A A
ak:Tk-i- T, T 4LTg k’ G — kyk—i—akxk; (25)
2L Ak + ag
2. Compute
i . i
T = argmin { agllr(us B) + h(w)] + 5 Ju - 22}, (26)
uedom h 2
Aryr + apTr
= 27
Y41 A+ ar (27)
Appr = Ap + ag, Th1 = Tk + Qgf; (28)

3. Set k < k+ 1 and go to step 1.

Remark: Formula for ax and Agi; in (25) and (28), respec-
tively, imply that

A1 Te( Ak + ag)
7 = 2
ay, ay,

= L. (29)

16



Question: How fast does A; grow?

1) By (25) and the fact that 7, > 75 = 1, have

> Tk+\/4LTkAk > i—l— I%

= 2L = 9L
and so
2
1 [A, 1 /1
= > Zk > [/ /=
A1 Ak+ak_2L+ L+Ak_( Ak+2\/;>
Hence

1 /1
VAps1 > VAL + 5\/;

This implies that
kK /1 k /1
VAL > A Ag+ =4/ = = =/ =
k= °+2¢; oV
k2

A >
F=ar

and hence that

2) By (25) again, have
> Tk+\/4LTkAk > E i TkAk

ag =

2L — 2L L
and so
Tk TkAk 1 Tk 2
Ak+1:Ak+ak2ﬁ+ 7 +Ak2<\/z4_k+§\/;>

Now, since Ay = 0 and 79 = 1, we have

k—1 k—1 k—1
Ak:AO+Zai:Zai7 Tk:TO+MZai:1+MAkZNAk

i=0 i=0 i=0

Combining the above two relations, we get

1 A ’ 1 ?
e [ WA Y
s ( S L) k(l 2 ZL)

Since Ay = 1/L, have

2(k—1)
1 1 /u
Ay>=(14+2,/E
k—L(+d L)

Hence, by 1) and 2) above
] 2 [ 2(k—1)
> — — — ] =
A > Lmax{ 1 (1—1—2’/[1)

17



Hence, the convergence rate of the AT-variant is
—2(k—1)
@ L 4 1 [\ 7?
< 20 1o-
o) =00 < - < 5 min g (T4 g7
Remark (iteration-complexity): For any tolerance € > 0, if
Ld2 |1 L Ld?
E>min{ 24/ =2, | = +4/— | log} +1
2 W 2

2e

then have

Proof: Exercise

18



2.3 Second ACG variant (S-FISTA)

This variant was originally proposed by Nesterov for set opti-
mization problems and later extended by Teboule et al to com-
posite optimization problems.

While the AT variant solves a composite subproblem for x4
and obtains y;, 1 in a straightforward manner, the FISTA variant
below solves a composite subproblem for y;,; and easily obtains

Tpi1-

Algorithm 5 (S-FISTA)
0. Given zy € dom h, set yg = xg, Ag =0, and k = 0;
1. Compute

Tk—f-\/T]?—f—ﬁlLTkAk - _Akyk—i—akxk

Ay +ap

ap —

2. Compute

. _ L .
Ykl = argmin {Kf(:c;xk) + h(x) + EH.T — :ck||2} , (31)

xcdom h
1 -
Tpy1 = — [Te@k + Lag(Yres1 — Tk) + p0xYrs1] 5 (32)
Tk+1
Apy1 = A + ax, Tk+1 = Tk T ap (33)

3. Set k < k+ 1 and go to step 1.

The justification of this variant relies on choosing
1) =) + Lz =yt =y + 51—t (34)
where for this analysis we let
7)== (52) + h()
Clearly,
30+ 2~ > 9()

and, by (13), have

L
4+ — argmin {wu) L a:~||2} (35)

19



Lemma 2.2. Function v(-) defined in (16) satisfies
7 € Conv, (R"),  ~(-) <7() < ¢()

and

) =30, = angmin o)+ - 317}

Proof: The first, third and fourth relations above are straight-
forward. It remains to show that v < 4. By (35) and funda-
mental result of convex analysis, have

h

() + 5 Ju - 7
+p

Y]

lu —y*1*

- L N L
V) + Sl =2+

(by (34)) =) + 5 (ly* —#° + 20" — & u—y*) + Ju— 7 )

L -
() + <l — 3P

f)/
and hence v < 7 holds. [

Using the above lemma, let us verify that (19) holds. Indeed,

AL
Y(7) + 52 19 = 21" =~(g) + 5 Iy — 2|

, L . L -

> min {3 (0) + 5l = 312} =207+ Gl - 3l

=3y + Syt~ 77 > o)

showing that (19) holds.

20



Moreover, by (20), ™ is always given by
" = argmin {a’y(u) - %HU — ZB||2}

and hence satisfies

aVy(@t)+ 1zt —2)=0

Since
Vy(u) = L(Z —y*) + p(u —y"),
we get
alL(Z —y) + pla™ —y ") +7(z" —2) =0
and hence

mtet = (t+ap)zt =Tt +al(y" — ) + pay”

which explains the update formula (32) for zj.

21



2.4 Stationarity Complexity Bounds

Let Ly be the smallest L such that f is L-smooth. Let us con-
sider the FISTA version with L > Ly.

Definition 2.3. A pair (y,u) satisfying
ue Vf(z)+0h(x), |ull<p

is called a a p-approximate stationary solution pair of ¢ = f+h.

The following result describes the iteration-complexity of S-
FISTA to find a p-approximate stationary solution pair of ¢.

Lemma 2.4. Define
up = Vf(ye) = VI (@e-1) + L(Ze-1 — yr)-
Then, the following statements hold:
a) for every k > 1,
8L2d3 '
(L= L) i A

b) for any p > 0, S-FISTA generates a p-approximate station-
ary solution pair (y,u) := (yx, ug) in at most

(359 250

iterations, where

. ) 2
ur € V f(yx) + Oh(yr), Join [Jui||* <

JE—

8L3 1 /u
et = — == 1 - -
¢=C((L,Ly) -1, c=c(p, L) +t35\ T

22



3 Nesterov’s approximation scheme

Consider the min-max SP problem
6. = min{6(z) = (f + h)(z) + B(z) :x € R} (36)
where
®(z) = max{({Az,y) — g(y) : y € R"} (37)
and the following conditions are assumed:
1) h € Conv (R") for some p > 0;
2) for some L >0, f : R® — R is convex and L-smooth;

)
3) g € Conv (R™) and dom g is bounded;
4) A:R"™ — R™ is a linear map;

)

5) the set X, of optimal solutions of (36) is nonempty (and
hence ¢, € R).

Remarks:

e The boundedness condition on domg is not needed but
guarantees that ®(x) is finite everywhere (exercise).

e the saddle function for the above min-max SP problem is

U(z,y) = (f +h)(z) + (Az,y) — g9(y) (38)

which is a closed convex-concave one.

23



Proposition 3.1. Consider the problem

O(2) = max{(z,y) — g(y) : y € R"} (39)
where §(-) € Conv,, (R™) for some p > 0. Then:

a) for every z € R™, problem (39) has a unique optimal solu-
tion §(z);

b) & is a finite everywhere convex function which is (1/u)-
smooth and whose gradient is given by

Vo(z) =g(z) VzeR"

Remark:

e Can not apply this result to (37) since the function g(-) in
(37) is not assumed to be in Conv,, (R™)

24



So let us perturb function g by a positive multiple of a convex
function d € Conv (R™) such that:

e d(-) is 1-strongly convex on Y := dom g;

e there exists yo € Y such that d(yo) = 0 and d(y) > 0 for
every y € Y,

ie., set g,(-) == ¢g(-) + pd(-) and consider the perturbed problem

P, (z) = max{(Az,y) — g.(y) : y € R™}
= max{(Az,y) — (g + pud)(y) 1y e R™}. (40

Example: d(y) = ||y — yo||*/2 for every y € R™

Idea of the scheme: If y is small, then ®, is a smooth finite
everywhere convex function which closely approximates ®. We
can then solve the perturbed problem

(0)s = min{g, () = (f + h)(z) + Pu(z) -z € R} (41)
using one of the ACG variants (e.g., FISTA).

25



Proposition 3.2. For every x € R® and p > 0, we have
a) (40) has a unique optimal solution y,(z);

b) @, is a finite everywhere convex function; moreover, ®, is
([A[[*/ p2)-smooth,

Vo, (r) = A"y,(x) VzeR"
and y,(-) is (||A|l/p)-Lipschitz continuous;
c) there holds

0 < 6(2) — u(x) = B(x) — B, (x) < pD}

where
Dy = sup{[d(y)]"* 1y € Y};

d) there holds
(¢u)* < ¢x < (¢u)* + NDSQ/

Proof: a) Consider problem (39) with § = g, and note that
D, (z) = D(Ax) (42)

where ® is as in (39). Clearly, in view of Prop 3.1(a) with
z = Az, (40) has a unique optimal solution y,(z) = §(Ax).

b) It follows from (42) and Prop 3.1(b) that ®, is is a finite
everywhere convex function such that

Vo, (x) = A*VO(Az) = A*j(Az) = Ay, (r) Vo € R™
Hence, for every x,z’ € R, have

[VE,u(2') = Ve, (z)]| = [|A"F(Ax") — A"y (Az)|
< A" [llg(A") — g(Az)]|

A*
Prop 3.1(b) < wHALE’ — Az
A*[]|A
ST
IA]*
ARy
w

26



c¢) The definition of Dy and the assumption that d(y) > 0 for
every y € Y imply that for every x e R" and y € Y,

(Az,y) — (9 + pd)(y)

(Az,y) — g(y)

(Az,y) — g(y) + p[D} — d(y)]
(Az,y) — (g + pd)(y) + pD3

IAINA A

Taking the supremum of both sides with respect to y, we then
conclude that

P, (z) < ®(z) < P,y (x) +pDy Vo eR™
d) Follows from c) and the definitions of ¢, and (¢, )..

27



Algorithm 6 (Nesterov approximation scheme)
0) Let € > 0 and zy € dom A be given and set

3

N:m;

1) Apply an ACG variant to the perturbed problem (41)
started from xy and stop with an iterate x; satisfying

Ou(wr) — (D) < (*)

o ™

Obs: (x) can also be replaced by ¢(zx) — ¢ < ¢

Note that

d(xr) — i = [P(ar) — Cbu(xk)] + [(bu(xk’) - ((bu)*] + [((bu)* — ¢
<UD} + [9uen) = (B)] +0S S +5+0=¢
Analysis of the scheme:

By the ACG analysis, we have that

o 2
b() — B(x) < Sy(x) + uD? — d(x) < % D2

A 2lizo — ol ¢
<|(L —
< (p+ L) 2zl 2

Taking « = Projx (o), we have

[AIPN 245 | €
Qb(fk)_gb*S(L‘f‘T ﬁ'f—i

So, if

2 2
L
L €

then ¢(xy) — ¢ < e.

So, the iteration complexity of Nesterov’s approximation scheme
is
Al do /L [[AlDy
@) L+—)—)=0 —+——|dy].
' <(\/_+ Vi Ve ' € " € ’

28



Another Termination:
Let

Ju=1+9y, L“:LJFW
Then f, is L,-smooth.
Setting
ur =V fu(wr) = V(@) + L@ — o)
have

Moreover, we have

L2
1 - 2 = e 0
min fJuq| (9( 13 )

Hence, the complexity of finding & such that ||ug| < p is

o (1))
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Now let us interpret (43), i.e., the inclusion

ur € V fu(zr) + Oh(xy).
Have

Viu(x) = V() + VU, (x) = V[(z) + Ayu(z)
Now, let yj, := y,(xx). Then,
V fulzr) = V f(z) + A%y
So, (43) reduces to
up € Vf(xr) + A%y + Oh(xy)

Also, by the definition of y,(-) as being the optimal solution of
(40), we have

0€ —Ar+0g,(y,(x)) =0 VzeR"
Taking x = xy, yields
0 € —Axy, + 09, (yk)
or equivalently
0 € —Azy + 0g(yr) + nVd(yr)

So let
v = —uVd(yg)
Then

ur € Vf(zg) + A'yp + Oh(zy), vp € —Azg + 9g(yx)

Now, the optimality condition for (x,y) to be a saddle point for
VU in (38) is

0e€ Vf(zx)+ A%y + Oh(x), 0€ —Ax+ dg(y)

Hence, if the residual pair (ug, vy) is small then (zy, yx) is a near
saddle point for .
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Now uy, can be made small by (44).

How about v;? If the quantity
Dy = sup{||Vd(yp)|| : k > 1}

is finite and p is chosen so as to satisfy

p< 2

Dy

then i
vkl = wl|Vd(yr)|| < pDy < p

Special case: If d(y) = ||y — vo||?/2 and Y is bounded, then
Dy =sup{|lyx — ol : k > 1} < V2Dy

Hence, it suffices to choose

. P
" Ay

Exercise: Consider the case where Y is unbounded and d(y) =
ly — yol|?/2. Show that Dy is also finite.
Hint:
e show that zj is bounded;
e show that
1Al

lye — yoll £ —Ilzk — 20|
1
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