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1 The problem and assumptions

Let = denote the support of random vector ¢ and consider the CO problem
¢« = min{o(z) := f(z) + h(z) : 2 € R"} (1)

where:

(A1) f,h € Conv (R™) are such that dom f O dom h;

(A2) for almost every £ € E, a functional oracle F(-,¢) : domh — R and a
stochastic subgradient oracle s(-,§) : dom h — R™ satisfying

f@) =E[F(z,8)], f(x):=E[s(z,¢)] € 0f(x)
for every x € dom h are available;

(A3) there exist constants M, L, o > 0 such that
!~ ! L ~ ~
ILf(Z) — f'(@)] §2M+§||m—x|| Vx,Z € domh

and
E|lls (#:6) = f @)|°] <0* Vo€ dombh;

(A4) the set of optimal solutions X, of (1) is nonempty.

Remarks:

1) condition (A2) does not require F(+,€) to be convex.

2) condition (A3) implies that
- . . L. . 2
0< f(@) = 4y (T52) < 2M||Z — || + F & — 2| (2)

where



3) Assume that there exists M; > 0 such that
Els(z; €)[*] < M7

Then, it follows that condition (A3) holds with ¢ = 2M; and M =
M. Indeed, for every = € dom h,

1f ()] = IIE[s(z, )| < E[l|s(z, )]
< (E[Is@@OI?)"* < My = M

and

]

|2
%]
2

E [lls(z, &) = f'@)I] <E[21f'@)]* + 2[|s(x, )]
< 2| f'(2)]|* + 2E [||s(=, €)|
<2ME42ME =4ME =0

Two inequalities above are due to:

Remark: If g : R® — R is convex and X (&) is a random variable, then

9(Ee[X(£)]) < Eelg(X(€))]

or simply
9(E[X]) < E[g(X)]



2 Stochastic CS method

Let

L (T, 8) = f(x)+ (s, — x).

Stochastic composite subgradient method

(0) Let xo € dom h be given, and set k = 0 and

3

Aim————————
(M2 +02)+¢eL’

(3)

(1) take a sample & of r.v. £ which is independent from the previous samples
&0y .-y &K1 and set s = s(zg, &k );

(2) compute
. 7 ~ 1
Tpy1 = argmin {qﬁi(m) = Ll(x; 8, 5K) + h(z) + ﬁHx - mk||2} (4)

where Zf(x; T, Sk) = f(zr) + (g, & — )5

(2) set k< k+ 1 and go to step 1.

Let E,,[-] denote expectation of [] conditioned on zy.

Remark:
1) relation (14) implies that

(M? + %)\

1-AL (5)

2) In view of (A2), have:

Eq, [se] = /(@)

and hence

B\ [0f (s 2k, s1)] = by (w5 05) Vo € R (6)

Moreover,
Ex, [llsk — f'(zx)|’] < 0 (7)



3 Complexity analysis

Lemma 3.1 For every k > 0 and x € dom h, we have

BlMai)] - o) < 5rab(o) - 3 (54 1) (o)

where
di(z) == E (|z — zx||*) Vk=>0.

Proof: Since the function ¢} defined in (15) is (A~ + u)-strongly convex,
it follows from (15) that

7 ~ 1/1
o) < @)~ 5 (5 +0) o= onnl?

~ 1 1
— Gy(aian, o) + o) + gxle —anl? -~ 5 (

1
L& +u> o — 2l

A

Taking expectation conditioned on xy, using (6), the definition of ¢ in (1)
and the fact that £¢(-; ) < f(-), have

~ 1 1/1
Erlidonin)] < Glaian) + (@) + grlle = onl? = 3 (5 +#) B (I = onal?)

1 , 1/1 )
< 0(0) + gyl = aull = 3 (54 0) Bue (Jo = ).

The lemma follows by taking expectation of the above inequality. ]



Lemma 3.2 For every k > 0, we have

B |0} (@ein)] 2 Elp(ari)) -

| ™

Proof: Using (2) and the definitions of ¢ and @3 in (1) and (15), respec-
tively, we conclude that for every x € dom h,

7 Pt 1
(ﬁg(&?) = éf(x; Tk 5}9) + h(-'lf) + ﬁ“.ﬁ - a:k||2
1
= Ly(wsap) + (@) + oyl — all® + (s = f/ (@), @ — 2x)

> (@) = Fllo —anlP = bl sl ) + ) + grllo — anlP + o - S - )

> 000 + 5 (5~ L) e = aull = O + s = @)D o = ]

> ofe) +min {5 (5 - 2) @ - 01+ o= Pl

teR | 2
(M + |lsk = f' (&) )?A (M? + |lsk = f' (@) )X
1- )AL '

=) - 2(1 - AL)

> p(x) —

Taking z = x41, have

(M? + [lske — f'(zr)I*)A
1- AL '

Op(Thi1) = S(Tps1) —

Taking expectation conditioned on zj, and using (5) and (7), have

~ M? +o?)\ £
Bo [Rena)] 2 Buy oo - T2 g o) - 2
1—-AL 2

The lemma follows by taking expectation of the above inequality. ]



Lemma 3.3 For every k > 0 and x € dom h, we have

Blbtonn)] - 6(0) < grdia) — 3 (5 +0) dta) + 5

Proof: This result follows immediately from Lemmas 3.2 and 3.1.

Consider the case where = 0 and define

1 F
TR
Then, Lemma 3.3 implies that
e Bz ) d2 1< 1
o 20\ TR > — — )
@)+ 5+ > kg k;(b(m)
1 E
>E ¢ (k Z%) =E[$ (@)]
i=1
Taking x = Projx, (zo), have
_ e d?

Final complexity:

d% 5 M?+02 L
04 ()\5) =0 <d0 [62 + -1



Consider now the case where p > 0. Recall that

1/1

Blo(a)] - 6(x) < -d}_y(x) & (A n u) B+ V21 ()

Lemma 3.4 Let {t;} and {ay} be sequence of nonnegative scalars satisfy-
mg

tr < ap_1— 0o +9 Vk > 1. (8)
for some positive scalars 8 and § > 0, and define

k k

Ty := @ik Zoiilti, O = Zei71 (9)

i=1 i=1
Then, for every k >0,

ag — 0Fay,
T, < ———+96
kS o,

Proof: Have

k k
Tk =Y 071 <> 07 (i1 — O +0) =

i=1 i=1 =1

k
((‘)i*lai_l - F)iai -+ Qiilé)

k
=ag — 0Fay + ZeHa < ap — 0Fay, + O49.
=1

Lemma 3.5 Let {Z;} C domh be a random sequence such that for every
kE>1,

El(@1)] < 5= >0 Elo(x:)] (10)
where O is as in (9) with 0 := (1 + pX). Then, for every k > 0 and
x € dom h, we have

1

Blo(@)] - 6(e) < 555

€
() - a3 ()) + 5
and
O > max {k, 0’“*1} .
Proof: First note that (x) implies that (8) holds with

2 0_2
S = gyl = Eloa)] - d(o)

0=1+An), 0= :2/\

It then follows from (10) and the first conclusion of Lemma 3.4 that

k

(Blo(@)] - o)) < 5- >0 [Blg(en)] - o(0)] < s, (@3(0) — 0 () 5,
and hence that the lemma holds. ]



Can take

Final complexity:

1 + d% 1 + d(2)
= 20)) = )1 20
O, (6_110g1 <)\€ Oy 1+M)\ g1 | 12

M2 2 L M2 2 L
=0 <[1++0 +] logt <d§ [gg +D>
el " € €



Let w be a v-distance generating function with respect to dom h

Stochastic Prox Mirror method

(0) Let zyp € dom h be given, and set k = 0 and

9
(M2 +02) +eL’

A= (11)

(1) take a sample & of r.v. £ which is independent from the previous samples
oy, &k—1 and set s = s(xg, &k );

(2) compute
Tpy1 = argmin {qgﬁ(ac) = 0y (x; h, s5) + h(x) + %dw(m; xk)} (12)

where gf(x; Tk, Sk) = f(zr) + (Sk, & — Tk);

(2) set k + k+ 1 and go to step 1.

Up to the constant v which also shows up in the complexity, the final
iteration-complexity bound is similar to the one above



4 Application
Consider the finite sum problem (FSP)
b = nt{$(z) = f(2) + h(z) : 7 € R}
where L
fla) = — ; fi(z) VzeR

and the following assumptions hold:

e h € Conv (R")

e for every i = 1,...,m, function f; € Conv (R") and dom f; O dom h;

e for every i = 1,...,m, there exists a function f/ : domh — R"
satisfying the following properties:

— fl(z) € 0f;(x) for all x € domh
— there exists M; > 0 such that for every z € dom h,

£ @)l < M; (13)

e optimal solution set X, is nonempty, and hence ¢, € R

10



Stochastic composite subgradient method for FSP

(0) Let z¢ € domh be given, and set k = 0 and

R
20072’ S\ m &=
(1) choose &; € {1,...,m} randomly with uniform distribution and set

sk = fe, (Tr)
(2) compute
.5 1 2
Tpt1 = argmin < Cy(z; zk, sg) + h(z) + ﬁHx — x|

where

Cp(w; o, sp) = fon) + (s, @ — k)

(2) set k< k+ 1 and go to step 1.

(14)

Let £ denote the random variable which takes value ¢ with probability
1/m for every i € {1,...,m}. Define

s(x;€) == fe(x) Vo € domh

Function s(-;-) is a stochatics subgradient since for every = € R™, have

Bels(r:6)] = Eelflr)] = > f > 0) = > 0fila) = 0f(a)

Clearly, the above method is the stochastic composite SM with the above
subgradient oracle, i.e,

sk =s(xp; &) Vk>0

11




Note that
Ellls(z: )] = Ee[| f4(a) Z 1@ < LS a2 = e
mi4
Complexity of the stochastic SM:
d2M?
0 ( !

Complexity of the deterministic SM:

d3 M
°(%)

where M is a constant such that

M? > sup{||f'(x)||? : © € dom h}

e.g.,

1/ ()] = H Zf

It is easy to see that

(Z 1l ||*)2 < <ij> o

M2

M?
So, the stochatics performs more iterations in general but evaluates less
subgradients per iteration (one versus m)

€ [1,m]

12



Example: Consider

fi(z) = [{as,z) +b;| Vi=1,...,m

Then
a; if (ai,w> +b; >0
ofi(z) = —a; if {a;,x) +b; <0
[7aiaai] if <ai7x>+bi =0
Then
M; = [lai|2
and . .
N2 = L3 a2 = A2 = -3 a(447)
mi4 m mi3
where

A=lay--ap] € R™™

On the other hand every s € 0f(x) is of the form

1 m
s = m z;piai
1=

where p; € [0,1] for every i = 1,...,m. Hence

1
—||A
|

where p = (p1,...,pm)T. So, we can take M such that

1 1 1
I = |49 < 21l < 1ALl <

1 1
M? = EHAW = E)\max(ATA)

So, 3
M? _ Zzn;l )‘i(ATA)

—_— = 1
ME T an(ATa) <L

13



5 Randomized block coordinate (RBC) meth-
ods

5.1 Unaccelerated RBC Method

5.1.1 Problem and assumptions

Consider the multiblock composite optimization sum (MCO) problem

¢« = Inf{d(x) := f(z) + h(z) : x € R"}

where
x=(x1,...,2p) ER™ x ... xR™ h(z):= Zhi(xi) Vo € R"
i=1
and the following assumptions hold:
o h; € Conv (R™) for every i =1,...,b
e for every i = 1,...,m, function f € Conv (R") and for every i =

1,...,b, there exists L; > 0 such that

L; v
fl@+Uid) < f(x) + (Vif(2),di) + S| dil* Vo €R", di €R™
where V; f(x) is the i-th block of Vf(x) and U; : R™ — R™ is the

linear map
U:(d;) =(0,...,d;,0,...,0)

e optimal solution set X, is nonempty, and hence ¢, € R

14



Unaccelerated Random Block Coordinate (U-RBC) Method

(0) Let 2° = (29,...,29) € domh be given, and set k =0

(pla s apb) S AE&L and set
xk+1 — xk[é-k]

where
a¥fi] = aF LU (Y —2k) Vi=1,....b

and

2

(2) set k < k+ 1 and go to step 1.

(1) choose & € {1,...,m} randomly according to the distribution p

L;
# — argmin, {<vif<x’€>,ui ) o hu) + s — xfn?}

Remark: The definition of z*[i] implies that its j-th block is equal to
J:;“ if j # i and is equal to #F if j =i

Notation: For z = (z1,...,23) € R" and n = (m1,...,m) € RE,
define ,
]2 =" mill:]?
i=1

Proposition 5.1 If p; = 1/b for everyi=1,...,b, then

b

Elp(a") = ¢.] < 7

[66°) — 6u+ 20 — 2] Vo € X,
where L = (Lq,...,Lyp)

Hence the e-iteration complexity of U-RBC is O(b/e), more specifically,

0, (b {cb(xo) — et [12° - x*IIQLD

3

15




5.1.2 Analysis

Let

k= (k2

Then
1
&% = argmin ,, {(Vf(xk),u — .Z'k> + h(u) + §||u — xk||2L}

1
= argmin ,, {Ef(u;xk) + §Hu - xk||%}

k

In the lemmas below, z, + and & denotes ¥, 2Ft1 and #*, respectively.

Lemma 5.2 For every u € dom h, have
1 2 . o s 2 1 112
b(w @) +hu) + Sllu — el 2 €5 (F52) + h(@) + SlIE — ez + 5 llu -2z

Proof: This follows from the convex analysis result that I mentioned at
the beginning of the course. [

Lemma 5.3 For every u € dom h, have

1 1 . . R 1.
Sllu==lI% = Slu=2l7 > [£p(2:2) + h(@) + 5l - 2l | - ()

Proof: Follows from the previous lemma and the fact that ¢(-) > () +
h(-) m

Lemma 5.4 Have

b

Cr(2; ) + h(2) + %lli“ — |7 > ox) + Z [p(2[i]) — ¢(z)]
Proof: Have
b
b5(di0) + 3l = ol = £) + 3 [(Vef o =) + 5 s =

i=1

Also,

The conclusion of the lemma now follows by summing the above two in-
equalities and using the fact that ¢ = f + h. m

16



Lemma 5.5 For every u € domh, have

b
L R (Z[qs(xm) - ¢><x>1> +0(x) — 6(u)
i=1

Proof: Follows trivially from Lemmas 5.3 and 5.4 [

Lemma 5.6 For every n = (m1,...,m) € R{’H and u € R™, have
2 2 R 2 2
E llzle] - ull}] ~ lle = ull} = 12 = wl}, = ko = wll,
where & € {1,...,b} is a random variable with distribution p = (p1,...,Dp)-

Proof: Let u € R" be given. First note that for any a € Rl_’._+ and
i€ {1,...,b}, have

I?

(6] = ully, = llz = ull? = i (12 = will® = lo; — wil®)

Hence

E |l2fe] - ull}] ~ llz - ull} = (sz Joli] — ul ) ~ o —ull;
-y (i) = wll? = o = ulf})
i=1
b
= > i (s = will® = s = will?)
i=1

~ 2 2
= lI& —ully, —llz —ul,

where the third equality is due to the first observation above and the last
one is due to the definition of || - ||4- ]

Lemma 5.7 Assume that & € {1,...,b} is a random variable with distri-
bution p = (p1,...,pp). Then, for every u € dom h, have

I = ull2 ~ E [lafé] - ull2] > () - () + —— (B [$(x[¢]) — 6())

Pmin
where n:=L/p and L = (Ly, ..., Ly).

Proof: It follows from Lemma 5.5 and Lemma 5.22 with n = L/p that

b
o = ull} — E [llof¢] - ull}] = > loa 1>+¢><> o(u)

Now, using the fact that ¢(z[i]) < ¢(z) for every i = 1,...,b, we have

b

b
Pmin Y_[6(zli]) — d(x)] > Zpi [¢([i]) — d(2)] = E[¢(z[¢]) — o(x)]

i=1

The conclusion of the lemma now follows by combining the above two re-
lations. -

17



Translated to the context of U-RBC, the result above implies the fol-
lowing result.

Lemma 5.8 Let n = L/p. then for every u € R™, have

LB o) —o(ab)]

e = 2= 3B [l — ull2] 2 64 -6+

min

Lemma 5.9 Letn = L/p and define

1/2
dip(u) := (E {ka — uHi]) , Op(u) :=FE [qb(xk) — gb(u)] .
Then, for every u € R™, have
Lk n()]? > )+ —

a 5 Pmin

3 i) Brra () = O]

Proposition 5.10 Ifn = L/p then, for every u € R™,
1 1
(]-/pmin) +k[2

Proof: Summing the inequality in the previous lemma from & = 0 to
k =k —1, have

1

Pmin

Gk(u) <

o) = G + ——0o(w)] .

k—1
B0(u) = 04 (0)] + 5 [don ()] — 3 k()] = 3 61(0) 2 K6 (1)

i=0

1

Pmin

since O—1(u) > Oi(u) for every k > 1. The conclusion of the proposition
immediately follows from the above inequality. [

Let us now express th eabove bound in terms of
do = dist(xo; Xy)
where the distance is in terms of || - ||.

Corollary 5.11 For every u € R",

1 1 L
0 <-— | = — ul?
kW) S AT [2max(p) o = wll” +

Proof: Have

6(%) - o).

min

b

b
L
[do.n (W) = ll2° = ullfy = Y _millad —will* =} —llaf —wil|?
b
=1

i=1 1
L\ & L
< max () Z 129 — us|* = ||zo — ul|? max ()
p) = p

The result now follows from the above proposition and the definition of

Go(u) ]

18



Corollary 5.12 For every u € R”,

by b (B 2 et -
B [04) — 0] < g [y (£) B+ 10 - o

Proof: Follows from the previous corollary with u = Projx, (zo)

Remarks:

1) The above bound can be further refined to

! 1 Linaxd§ 0
B (o) - 0] < T |25 o) - 0]
2) If p; =1/b for every i = 1,...,b then
b [ Lmaxd]
B [o4) — 0] < gy | 225 4 o) - 0]

Question: What is the Lipschitz constant of V f(-) in terms of the L;’s?

19



5.2 Accelerated RBC Method
5.2.1 The method
We start by stating the method

A-RBC Method

where

xk[z] =zF + Uz(fci€ - xf),

(3) set k + k+ 1 and go to step 1.

(0) Let 2° = (29,...,2Y) € domh be given, and set k =0, y* =2° Ay =0
(1) compute aj > 0 such that
a; 1
A + ag N
and set . .
- Ary”® + apx
Appr = Ag +ap, 3F = L TR
Akt

(2) choose & € {1,...,m} randomly according to the uniform distribution

p=(1/b,...,1/b) € A@r, and compute

k+1 k k+1 _ = Lo k41 k ~ bak . ji1 k
=2t G], YT = a3+ (@ —at) =T+ — (@7 —2Y)
bak Ak+1

¥ = argmin ,, (ak [<sz(;%f),u - :if> + hi(u)] + %Hu — fo?) .

Proposition 5.13 Assume that n = L/p and p = (1/b,...,1/b). Then,
for every k > 0, the following statements hold:

a) have

AeniE [ — o) + B [~ ulf]

< AE[p(s") — 6(w)] + =

2b

E [[la* —ul|,

b) Ay > k2/4b?

20




Corollary 5.14 Assume that n = L/p and p = (1/b,...,1/b). Then, for
every k > 0,

2b 20>
E[6(") — ¢(w)] < 3 [|o° —ull; < 7z 12 —ul;

As a consequence,

b2
E [6(") — 0.] < Ty max(L)d

Hence, the e-iteration complexity of A-RBC is O(b/+/), more specifi-

cally,
) (bdo ma’j”)

21



5.2.2 Analysis

Lemma 5.15 Have
A . 1 2
& = argmin ,, a’y(u)—!—%Hu—xHL .

where
Y() =Ly (@) + h()

Proof: Obvious. n

Lemma 5.16 For every u € domh, have

1 1 1
@1(®) + 5118 — 213 < av(w) + o llu — o} — 5l — .

Proof: This follows from the convex analysis result that I mentioned at
the beginning of the course. [

Lemma 5.17 For everyi=1,...,b, define

1 ) . ba ,
oo (ali) = @) = 3+ = (ali) - ).

ylil =2+ e

Then, for everyi=1,...,b, have

. A a .
yli] = a7y + Fxb[l]

where
xpi] = x + bU;(Z; — ;) = v+ b(x[i] — x).

Proof: We have

il = &+ = (ali] ~ )
Ay + ax ba

—_———
:Cb[’i]
L]
Lemma 5.18 We have %2?21 xpli] = .
Proof: We have
xp[i] = x + b (z[i] — z) = v+ bU; (&5 — x4)
and hence
12
gbe[i] 4= [b(E—2) =2
i=1
L]
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Lemma 5.19 If h is an indicator function and y[i] € dom h, then

ARGl < AB(y) + 0 (@ulil) + i — il

where Y(u) = L§(u; Z).

Proof: We have

(i) < £l E) + By + 2yl — 212 = Al + 2yl - 2

2 2
So,
A0 < A7 360D + 5l - 1]
(by Lemma (5.17)) = A* {a (;y + ;xb[i]) + mmm ~z||?
(convexity of 7)< A3{y) + a3z i]) + = fi]
< Ag(y) + 3w fil) + 2 llali] I

Lemma 5.20 If h is an indicator function, have

AYEBGIED] < Ad() + ar(3) + g 16— ol

Proof:

23



Lemma 5.21 If h is an indicator function, we have

1
ATE[0(y[e]) — 6(w)] < Al6(y) — 0] + o [ — 2} — o u— 2l
Proof: Have
ATE[BIE] < AB(y) + ar(w) + o lu— allf — o lu — 8l
1 1
< A9(y) + ad(u) + llu — 2} — o lu— @l

The conclusion of the lemma now follows by subtracting AT ¢(u) from both
sides and using the fact that AT = A + a. [

Lemma 5.22 For everyn = (n1,...,m) € RI_’H and u € R™, have

2 2 A 2 2
E|llzle] - ull}] = llz = wll} = & = wl}, — o - ul},

where § € {1,...,b} is a random variable with distribution p = (p1,...,Dpp)-
Hence, if n =bL and p; = 1/b for every i =1,...,b, then

2 2 2 A 2
o = wly ~ E [lafe] - ull}] = llz = ull} - 12 - wl}

Lemma 5.23 Assume that h is an indicator function and let n = L/p.
Then, for all u € R™,

ATE[B([€]) — 6]+ 55 [lele] = ull’] < Al — o)) + 35 o —
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