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1 Convergence of the HPE framework

Recall the HPE framework

Inexact IPP
0) Let zp € R™ and o € [0, 1] be given and set k = 1.
1) Choose Ag > 0 and find (xg, Tk, ex) € R™ x R™ x Ry such that

- Rk—1 — % -
T . ;\k b € T (z)

12 — 2ll” + 20ner < 02 |12 — 25|

2) Set k < k + 1 and go to step 1.




Pointwise Convergence

Lemma 1: For every k > 1 and z € R™, have

2 =zl = Il2 = x|

= 20 (B — 2, Tk) + 13 — zeal)® — 12 — 2l

Proof: Have

2 2
2 — ze—1lI” = [I2 — 2l

2z — 2k, 26 — 26-1) + |2k — 261 ||

(2= Zy 2k — 2h1) + 202k — 20, 2 — 26-1) + |12k — 281

=2
~ ~ 2 ~ 2
2<z—zk,zk—zk_1>—|—sz—zk_1|| — ||Z]€—Zk||

—2X\ (2 — 2, ) + |12k — ze-1l” — 12k — zal?

Lemma 2: For every kK > 1 and z, € T_l(O), have

2 = ziall® = Iz = zll* = (1= 0®)|IZ — 21| 2 0

Proof: If z, € T71(0) then it follows that (z,,0) € grT. Moreover, since ¥ €
Tk (2)), we have (2, 0r) € grT*. Hence, it follows from the definition of T°* that

(Zk — 24, 0k) = (2 — 25,0 — 0) > —¢p,
This inequality and Lemma 1 with z = z, then imply that

2 = 21]l* = l2e — 21

= 20 (B — 2, k) + 13 — 2 ||® = 112 — 2|
> —2Xe + 125 — ze-1l” — 125 — 2l

= 113 = 2 ll® = {12 = 2el® + 27vei

> 125 — 2 ll” = 02 |12k — 21 |

where the last inequality is due to the HPE inequality condition



Lemma 3: For every K > 1 and z, € T~!(0), have

K
20 = 20l1* = |2 — 2 1* > (1 = 0*) > 3 — 21
k=1

Proof: Follows by adding the inequality in Lemma 2 from £ =1 to k = K.

Lemma 4: For every K > 1, have

20 ek Ajl|Tn|? . 2
ZEIERT U s gy
max{ o (4o S 12k — zk—1]]

Proof: The first inequality of the Lemma follows from the HPE inequality condi-
tion. The second one is due to the fact that

el Okl = |z — 2k—1l
=z — Zk + Zk — 21|
< lzk = Zell + 12 — 26—l
< ol1Zk = zr—1ll + 26 — 2o
=1+ )2k — 26—l

where the second inequality is due to the HPE inequality condition



Lemma 5: For every K > 1, there exists k € {1,..., K} such that

e < o%d?
= oa (1 - oK’
|5 12 M
T XN(1-0)K

where dy = min{||z. — 29 : z. € T71(0)}.

As a consequence, if there exists A > 0 such that A, > A forevery k € {1,..., K},
then there exists k € {1,..., K} such that

1
o (e, [0} = 0 ()

Proof: Let z, be the closest point to zg lying in 7-1(0). Hence, dy = ||z« — 20]|-
Then, it follows from Lemma 3 that

K
K min ||2k_2k371H2 SZH%]C—Z]C,HF S
k=1,..., K P

dg
1—02
Thus, there exists k € {1,..., K} such that

dg
K(1—-o0?)

Dper 2[5k
Z||5k—2’f~c1||22]fn&x{ bk k““k}

o2 " (1+0)2

where the last inequality is due to Lemma 4.



Ergodic Convergence

Technical Lemma: Assume that T is maximal monotone and that gr7 # () for
some € € R. Then, € >0

Proof: Assume for contradiction that (y,w) € grT® for some ¢ < 0 and (y,w) €
R™ x R™. Then
(w—v,y—z)>—->0 V(r,v)egrT

Have (w,y) € grT since otherwise the above inequality with (z,v) = (y,w) would
give an absurd. Consider now the multi-valued operator 7" such that

ng =TU {(wvy)}

It follows from the monotonicity of 7" and the above inequality that T is monotone.
Moreover, T is larger than T and includes T'. These two conclusions then contradict
the assumption that T is a maximal monotone operator



Lemma 6: For every K > 1, we have

U € Tk () (1)
where
1 K 2 z 1 a
a - R0~ 2K ~a . .
Vg .—Ez)\kvk— AK 2K —EZA]CZ[C
k=1 k=1
1 K
E‘k = — Z)\k [(ﬁk,gk — 2?(> +Ek] >0
Ak i
and

K
Ap = ZAk
k=1

Proof: Let (z,v) € gr T be given. The HPE inclusion ¢, € T (Z;) implies that
(Up —v, 2 — 2) > —&g
or equivalently,
<'L~)k,2k — Z> + e > <U,§k — Z>
Hence
1« 1
7Z>\k [<T~/k,5k —2) —|—€k] > —

A A
K3 K=

M=

Ae{v, 2 — 2) = (v, 2% — 2)

where the equality is due to the definition of 2. Now let
| X
Ik(z) = — Z)\k [<2k — 2z, 0) + EK]
k=1

Then
Tk(z) > (v,2% — 2)

Note that I'k (+) is an affine function such that
VFKZ—f}[;(, FK(E}Z()Z(:‘}I(
where these two identities follows from the definitions of v% and €%. Thus,

I'(z) =Tk(Z%)+ (—VIlk, 2k — 2)

:etll(+ <ﬁ?(72?( _Z>
We then conclude that
% + (0%, 2% — 2) > (v, 2% — 2)

Since this holds for every (z,v) € grT, we conclude that (1) holds. The fact that
€% > 0 follows from (1) and the Technical Lemma above.



Lemma 7: For every K > 1, we have

ol < 32
Proof: Have
~a s - us 20 — RK
Uk =} ;)\kvk =1 ;(zk_l —z) = Ao

Hence,

20 = zx |l _ [lz0 = 2 + 2 — 2|
<

Jog = Loom 2l oo =2 4
< 20 = 2l + 25 — 2]
< A
2l _ 2
- A Ax



Lemma 8: For every k > 1 and z € R™, have
2 = 2 l® = 11z — 2?2 20 (2) + (1= 02) |3k — 241

where
Y(2) == (2 — 2,0k) + €k

Proof: By Lemma 1 and the definition of ~x(-), have

Iz = zeoall” = ||z — 2l

=20 (B — 2,0 + |7k — 21> = |12 — 2|

= 207k (2) + |12k — ze—1ll® = 12k — 2l1® — 2heen
> 20(2) + (1= 02) |3 — 2k |

where the inequality is due to the HPE inequality condition.

Lemma 9: For every K > 1 and z € R™, have

Iz = 20l = 12 = 2xll® = 20k Tk () + (1 = 02) 3 12 — 2|2

where

1« 1 =z
Afz)\k’m ZM [(Zk — 2, Uk) + ex)
k= k=1

Proof: This result follows from the definition of I';(-) and by adding the inequality
of Lemma 8 from k=1to k =k

Lemma 10: For every K > 1 and 2z € R"”, have

K
125 = 20l1” = 12k — zxl|* = 28kef + (1= 0%) D 12 — 21
k=1

Proof: This result follows from the fact that
ek = 'k (Zk)

and the previous lemma with z = 2§



Lemma 11: For every K > 1 and z € R"”, have

u o? d?
K S (4+ ].—0'2)/\]0(

Proof: The previous lemma implies that

Now,

~ 2
2% — 2ol

@ <
K = 2A g

~ 2 ~
1Z% — zol| §max{||zK—z0H2:k= 1,...,K}

<max2{||Z — zl]* + ||z — 20)* : k=1,...,K}
<2max {||Z — 2> +4dj : k=1,..., K}
< 8dJ + 207 max { ||z, — zp_1|? 1k =1,...,K}

2 2 d% o’ 2
< 8dg + 20 T 22(4+102>d0



2 Generalized HPE framework (overview)

Consider the MIP
0eT(z)

where T : R™ = R"” is maximal monotone

Assume that for some semi-norm in R", the following conditions hold:
1) T7H0) # 0
2) there exists m, M > 0 such that for every z,2’ € R", have
(dw).() 2 Z |12’ = 2]

IVw(z') = Vw(2)[" < M[|2" - z||

where
[ 1" == sup{(-,v) : ]| <1}

Condition 2) implies that

M
Sl =212 < (@).(z) < Sz =P Va2 €z (2)

Example: If

w(-) = (1/2)] - I3
where (@ is a self-adjoint positive semidefinite linear operator, then w satisfies con-
dition 2 with (m, M) = (1,1).

Proposition 2.1 If Q : R™ — R" is a self-adjoint positive semidefinite linear
operator, then the semi-norm

1= QN2
satisfies the following statements:
(¢) dom | - [|* = Tm(Q) and
1Qz]" = [zl VzeR"
(b) if Q is invertible, then

el = (@5, 2)'/? VzeR"
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Algorithm 1 (Inexact PPM framework with Bregman distance)

0. Let zo € R™ and o € [0,1] be given.
1. Find A > 0 and (z, Z,¢) € R™ x R™ x R, such that

V’lU(ZO)/\— Vw(z) c TE(E) (3)

(dw):(2) + Ae < o(dw)z,(2) (4)

2. Set zg + z and go to step 1.

Hence, sequence-wise, we have for every k > 1 that

Vw(zg—1) — Vw(zk)
Ak
(dw):(2k) + Aker < o(dw)s,, (2k) (6)

Tk -

€ T°%(Z) (5)

Proposition 2.2 (Pointwise) Assume that o < 1 and A\, > A for every k > 1.
Then, for every k > 1, there exists i < k such that

e 2M [ +o)(dw)e (1
Il < 2y B2 o (1)

and
(1+0)(dw)o 1
w0 ()

where r; is as in (5) and

(dw)o := inf { (dw),(2.) : 2. € T71(0)}

11



For k > 1, define Ay := Zle A; and the ergodic iterate (Z§,7r¢,ef) as

k k k
sa 1 E 3 a 1 E a 1 E s za
2 = A7k 2 )\izi, T = rk 2 )\iri, € = Ai )\z (€i + <T’L'a Ri = Zk>) . (7)

ki

Theorem 2.3 (Ergodic convergence of the NE-HPE) For ecvery k > 1, we
have
ri € T (Z})

and
ans _ 2V/2M (dwo)'/? a M7 [ 3(dw)o + o6
F e ey LA LCO AR
N m A
where
9k = ‘_Hllaxk(dw)ziﬂ(ii)' (8)

Moreover, the sequence {0y} is bounded under either one of the following situations:

(a) o <1, in which case

—~

dw)o

0, < :
kX 1_o’

9)
(b) Dom T is bounded, in which case
2M
0 < —[(dw)o + D]
m

where
D := sup {min{(dw)y(y'), (dw)y (y)} : y,y" € Dom T'}
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