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1 Unaccelerated CGMs

1.1 Problem description and assumptions

Consider the problem
b= min 6(2) 1= [(z) + h(2) (1)

where
A1) h € Conv (R™);

A2) there exists L > 0 such that f is L-smooth on dom A, i.e., f is differentiable
on dom h and

IVF(Z) = Vi) < |2 -2l V2,2 € domh (2)

A3) f is nonconvex.

Hence,

M M
—7||Z—z||2 < f(B) —Lf(22) < ?Hé —2||?, V2,2 € domh

where

li(2) = f(z) + (Vf(2),-—2)  Vze€domh

Optimality for (1): If Z is an local minimum of (1), then
0 € Vf(z)+ oh(z) (3)

A point z € R™ satisfying (3) is called a stationary point of (1)

Hence, every local min of (1) is a stationary point of (1) but the reverse is not
necessarily true.



The method below is the composite gradient method (CGM) for solving (1).

Algorithm 1 Composite Gradient Method (CGM)

0. Let initial point zg € domh and A € (0,2/M) be given and set k =1
1. Compute

1
T}, € argmin {ff(x; Tp—1) + h(z) + 5”1‘ — xk_1||2} (4)

2. Set k + k+ 1 and go to step 1

Lemma 1.1. For every k > 1, the vector vy, € R™ defined as

Vg 1= %(qu — ) + Vf(xy) = Vf(xp—1)

satisfies

Vv € Vf(l'k) + Bh(xk)

14+ AL
foull < (525 llow -l

and

Proof: The optimality condition for (4) implies that

1
0e Vf(a:k,l) + Bh(:ck) + X({L‘k — {Ekfl)
The inclusion in the conclusion of the lemma now follows from the above inclusion
and the definition of vi. Moreover, the definition of vy and the triangle inequality

imply
lorll < A zp—r = @ll + [V (k) = V(@) < (A4 L) [lag — 2|

where the last inequality is due to (6). Hence, the inequality in the conclusion of
the lemma follows. m

The size of v then tells us how good zj is as an approximate stationary solution
of (1)

Definition: = € domh is said to be a p-stationary solution of (1) if there exists
v € R™ such that
v e Vf(x)+0oh(x), [v]<p

Note that the pair (x,v) = (z, v;) generated by CGM satisfies the above inclusion.
The question that remains is: how many iterations does CGM need to perform in
order to generate a p-stationary solution? To answer this question, we will analyze
below how ||vk|| behaves.



Lemma 1.2. For every k > 1 and x € R", have
O (i) +h@) + —| 12 = ol — a2
F\L; TE—1 X I\ T Th—-1 N x Tk
1
> Ly(xp; xp—1) + h(xr) + ﬁ”xk — x|

Proof: Follows from the popular basic convex analysis result. [

Lemma 1.3. For every k > 1, have

anr) = 6(on) > (5= ) low = a2 0

Proof: The first inequality follows from Lemma 1.2 with = z;_; and the fact
that, for every o € R™, we have {;(z;2) = f(z) and

M
ly(wsap) > flz) = o Iz = 2l

The second inequality of the lemma follows from the assumption that A € (0,2/M)
and hence 1/A > M/2 L]



Lemma 1.4. For every K > 1 and 1 € {0,..., K — 1}, have

o)~ dlok) = iy 5 ful?

k=I+1

As a consequence,

o)~ 02 5 5 ful?

k=I+1

Proof: Summing the inequality of Lemma 1.4 from k =1+ 1 to k = K, we have

K
o(z1) — d(ak) > (2 —2/>\\M> > law =l

k=I+1

2—\M 22
>< ) S ful?
2 ) T+AL) &=,

where the last inequality is due to Lemma 1.1. Hence, the lemma follows. L]

Proposition 1.5. Assume that the sequence {¢(xy)} is bounded below by ¢. Then,
for every K > 1,

i o< [ 505 (5

Proof: Follows immediately from the previous lemma with [ = 0. ]

Consequence: The complexity to obtain a p-stationary point z = xy, (i.e., a point
x such that
v € df(x) + Oh(x)

for some v € R™ satisfying ||v]| < p) is

Under some assumptions, we will next show that

(mMD2 . M2dg>

<
 min fo]* <0

K K2

where m is a weakly convex parameter for f over domh



1.2  Alternative complexity bound

For this subsection, assume that

A1) h € Conv (R™) and dom h is bounded;

A2) f is differentiable on dom h and there exist m, M > 0 such that
M
—TlE =P < FB) ~ 4y(52) < SlE—2|? Vaiedomh  (5)

A3) f is nonconvex.

It can be shown that (5) implies that f(-) + (m/2)| - ||? is convex on dom h and that
IV4() = VA S LIE 2], ¥2% € domh (6)
where

L := max{m, M}.

It can be shown that the set of optimal solutions X, of (1) is nonempty.



Lemma 1.6. Assume that A € (0,1/M]. Then, for every k > 1 and x. € X, have

1 m
ox (oo =2 = flo =2 ?) + 3 flzies — 2. > 6lan) — o)

Proof: Lemma 1.2 with x = z, yields

1
sl — o = sl — ol

1
2 by (@ or—1) + hlaw) + 5 llow = wp |l = O (s an—1) — h(a)
At —M

> G(ar) + Il — @ |* = L (@as p1) — h(zs)
At —-M m
> o) + 2 — i |2 6) — 2 s —
wehere the second and third inequality is due to (5) L]
Lemma 1.7. For every K > k >0,
K
A2 — AM) ,
P(ar) — d(xs) =2 573 llvel
IESVII )
Proof: Follows immediately from Lemma 1.4 with [ = k and ¢ = ¢(x.) L]

Lemma 1.8. For every K > 0,

(14 AL)? d? 2mD?
Ok < @0 <)\2K(I2 ) T NK = 1)>

where

R : 2 R AT /
O = érIlCl%lKHka ) D :=sup{|jz — || : x,2" € domh}

Proof: Let z, be the closest point to gy in X,. It follows from the previous lemma,
that

A2 — AM)

— (K —k)Og < — X
1 2 2 m 2

< — — — — _

< o5 (lont =2l = llow = 2l*) + 5 s — 2
1 2 2 mD2

< — — —

< o5 (lanes = @ull® = llan —2]*) + 25

where the second inequality is due to Lemma 1.6 and the last one is due to the
definition of D. Summing the above inequality from k£ = 1 to £ = K, we conclude
that A2 = AM) K(K — 1) 1
— — m
Ok < =—|lwo — =.|* + = KD
21+ ML)2 2 K < gyl —zll”+ 5

and hence that the conclusion of the lemma holds.



Hence, if A = 1/M, have

o 0( L2d3 mL2D? )
K:

KK -1) T ME -1

and the complexity of finding a p-stationary point of (1) is

Ld 212
(9(°+le;>
p Mp

Under the assumption that M > m, and hence L = M, the above bound becomes

M M D?
o (12

p p?

Exercise: Derive an iteration-complexity bound close to the one above for the case
where A € (0,2/M]

Next lecture, we will present an accelerated CGM whose complexity is

Mdy1??  mMD? mM D2
O + 2 + 2
p P p



