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1 The problem and assumptions
Let = denote the support of random vector £ and consider the CO problem
¢« = min{o(z) := f(z) + h(z) : 2 € R"} (1)
where:
(A1) h € Conv, (R™) for some p > 0;
(A2) f € Conv (R") is such that dom f D dom h;

(A3) for almost every £ € E, a functional oracle F(-,£) : domh — R and a
stochastic subgradient oracle s(-,§) : dom h — R™ satisfying

f@) =E[F(z,8)], [f(z):=E[s(z,¢)] € 0f(x)
for every z € dom h are available;

(A4) there exist constants M, L, o > 0 such that
1F'G) — @l <2M+ L -2 Va,7 € domh

and
E[ls (@:6) = £ @)°] <0 Vo€ domh;

(A5) the set of optimal solutions X, of (1) is nonempty.

Remarks:

1) condition (A2) does not require F'(-,£) to be convex.

2) condition (A3) implies that
- - - L, . 2
0= f(@) = £y(&52) < 2M||Z — 2f| + S ||Z — 2| 2)

where



3) Assume that there exists M > 0 such that
E[s(x; €)|*] < M.

We will show that the above condition implies that condition (A3) holds
with (M, L) = (M,0) and o = 2M.

Indeed, for every = € dom h,
1" (@)l = I[E[s(z, O]l < E[l|s(z,&)|]
< (E[ls(z,©)I%))""* < i1

This implies that the first inequality in (A4) holds with M = M and L = 0.
Moreover, we have

E [lls(z,€) = f'(@)I*] <E[2]f' @) +2]s(z,

3]
< 2| f(2)|]* + 2E [[|s(z, €)|
< 2M? + 2M? = 4M? = o°

%]
?)

which shows that the second inequality in (A4) holds with o = 2M

The two inequalities above are due to:

Remark: If g : R® — R is convex and X (¢) is a random variable, then

9(Ee[X(€)]) < Eelg(X(€))]

or simply
9(E[X]) < E[g(X)]



2 Stochastic CS method

Let

L (T, 8) = f(x)+ (s, — x).

Stochastic composite subgradient method

(0) Let xo € dom h be given, and set k = 0 and

9
A= ; 3
2(M? +02%)+eL’ )

(1) take a sample & of r.v. £ which is independent from the previous samples
&0y .-y &K1 and set s = s(zg, &k );

(2) compute
. 7 ~ 1
Tpy1 = argmin {qﬁi(m) = Ll(x; 8, 5K) + h(z) + ﬁHx - mk||2} (4)

where Zf(x; T, Sk) = f(zr) + (g, & — )5

(2) set k< k+ 1 and go to step 1.

Let E,,[-] denote expectation of [] conditioned on zy.

Remark:

1) relation (3) implies that

(M2 402X €
1—=AL 2 (5)
2) In view of (A2), have:
Ewk [Sk] = f/(xk)

and hence

Exk [ﬂf(x;xk,sk)] = gf(l‘;(ﬂk) Vo € R (6)

Moreover,
Ex [llse — f/(@)[?) < o o



3 Complexity analysis

Lemma 3.1 For every k > 0 and x € dom h, we have

BlMai)] - o) < 5rad(o) = 3 (54 1) (o)

where
di(z) == E (o — zx||*) Vk>0.

Proof: Since the function ¢} defined in (3) is (A\~! 4 p)-strongly convex, it
follows from (3) that

- - 1/1
o) < @)~ 5 (5 +0) o= onnl?

1
! +u> o — 2l

- 1 1
— Cy(aian, o) + 1o + gxle —anl? = 3 (5

2

Taking expectation conditioned on x, using (6), the definition of ¢ in (1) and
the fact that £¢(-;21) < f(-), have

1
<+ M) Eq, (llz = zrs|?)

Er B (ons)] < (s m) +h(a) + 5 lle — 2l — (A

2
1 , 1/1 )
< 6(@) + oyl — 2l = 5 (5 + 1) Bay (Il = 2l

The lemma follows by taking expectation of the above inequality. ]



Lemma 3.2 For every k > 0, we have

E [&g(xkﬂ)] > Blp(wpt1)] — g

Proof: Using (2) and the definitions of ¢ and ¢} in (1) and (3),
respectively, we conclude that for every x € dom h,

5h(a) = I3 vy ) + bla) + 5o — o
= Ly30) + h(a) + 551 =l + (s — o)y — )
> (f0) - Fllo =l = Ml — ] )

+ h(x) + %Hx —apl? + (s — f'(zp),  — 1)

> 0(0) 45 (5 = 1) llo =l = (1 + s~ o) o - o]

> o) +in {5 (3 1) - O+ e - o))

_ (M + [lsk — f"(zx) )X
= o) - 2(1 — AL)

Taking x = x4, have

(M2 + |lsk — f"(xi)[[)A
1- AL '

O (wrs1) > S(Thr1) —
Taking expectation conditioned on xj, and using (5) and (7), have

(M? + o)\

1—\L = Ey, [¢(5L‘k+1)] -

By, [ S@n)] 2 Bry[o(ae)] -

DO ™

The lemma follows by taking expectation of the above inequality. m



Lemma 3.3 For every k > 0 and x € dom h, we have

Eplarn)] - 6(z) < 57ai(e) — 3 (% + u) Boal) + 5

Proof: This result follows by combining Lemmas 3.1 and 3.2.

Consider the case where p = 0 and define

Then, Lemma 3.3 implies that

| ) - &)

€ 1
o)+ 3 T\ &




Consider now the case where p > 0. Recall that

1

B [o{a)] ~ 6(x) < iy (a)— 3 G i u) Ba)+S i1 (9

Lemma 3.4 Let {t;} and {ay} be sequence of nonnegative scalars
satisfying
tk S A1 — Gak + 0 Vk Z 1. (8)

for some positive scalars 6 and 6 > 0, and define

k k

Ty, == @ik >0, Op=> 607! (9)

i=1 i=1
Then, for every k > 0,

Cko—ekOék
T, <—+49
kS o +

Proof: Have
k

k
@ka = Z Qi_lti S Z Gi_l (Oéi_l - QOZZ‘ + (5)

=1 =1

k
=> (0 iy — 0o + 6710)

i=1

k
= ag — 0Fay, + Z@i_15 < ap — 0%y, + O0.

i=1

]
Remark: Relation (%) implies that (8) holds with
(M? + a%)\
g 1 = ——
0=(1+Au), ¢ 1=AD)
1
g = 5di(w>, tr = El¢(zr)] — o(),
Lemma 3.4 then implies that
L&
o 20 B[] - é()
i=1
<1 (d3(z) — 0"d;(2)) + = (10)
~20,A " 2



Lemma 3.5 Let {Z;} C domh be a random sequence such that for
every k > 1,

Elp(@)] < @i Z 0L E[p(x,)] (11)

where O is as in (9) with 0 := (1+ pX). Then, for every k > 0 and
x € dom h, we have
1

Blo(@)] - o(0) < 555

(&) - 0" () +

and
O > max {k, 9’“’1} )
Proof: Follows from (10) and (11) that

k

[Bld(ae)] - 6(o)] < g- 300 [Elo(ar)] - 6(a)
< 2@1M (dB(2) - 0" d3(x)) + 3,
and hence that the lemma holds. n



Taking
k

Ty = @ik Z 01z,

i=1

and x = Projy, (o), we obtain

B _c, &

_ g
Ep (@) - 6] < 20,1 — 2 ' 20F-1)

_|_

DO ™

Final complexity:
1 d?
—— Joot [ 20
o (ot (32))
1 d?
= 1+ —)logf [ 2
o (5 et (30))

&2

M? 2 L M2 2
_o, ([HJW] logt (dg [i+

et

L

€

D)



Let w be a v-distance generating function for dom A

Stochastic Prox Mirror method

(0) Let xyp € dom h be given, and set k = 0 and

5
4(M? +0?) +eL’

A=

(1) take a sample & of r.v. & which is independent from the pre-
vious samples &, ..., &1 and set s; = s(xg, &);

(2) compute
. ~ 1
Tpy1 = argmin {Ef(:p;xk, sk) + h(z) + de(x; xk)}

where 07 (z; 2y, 51) = f(xx) + (sp, & — 21);

(2) set k < k+ 1 and go to step 1.

Up to the constant v which also shows up in the complexity, the
final iteration-complexity bound is similar to the one above

10



4 Application

Consider the finite sum problem (FSP)
¢. = inf{o(z) := f(z) + h(x) : 2 € R"}
where
1 m
= — ; R"”
fla) = — ; fiz) Vx e

and the following assumptions hold:

e hh € Conv (R")

e for every i = 1,...,m, function f; € Conv (R") and dom f; D
dom h;

e for every i = 1,...,m, there exists a function f/ : domh — R"
satisfying the following properties:

— fl(z) € Of;(z) for all x € dom h
— there exists M; > 0 such that for every x € dom h,

1fi @)l < M; (12)

e optimal solution set X, is nonempty, and hence ¢, € R

11



Stochastic CSM for FSP
0) Let xy € dom h be given, and set & = 0 and

L e
Co10M?’

1) choose & € {1,...,m} randomly with uniform distri-
bution and set

Sk = fék(mk)
2) compute
. ~ 1 5
Tp1 = argmin < C(z; zp, s) + h(x) + ﬁ”x —

where

Ce(zy g, s6) = flag) + (Sg,x — )

3) set k < k+ 1 and go to step 1.

Let £ denote the random variable which takes value ¢ with prob-
ability 1/m for every i € {1,...,m}, and define

s(x;8) := fi(x) Vo € domh

Function s(+;-) is a stochatic subgradient since for every = € R",
have

Bels(e;6)] = Bel (@) = = Y fl(0) € = 3" 0fila) = 01 (x)

Clearly, the above method is the stochastic CSM with the above
subgradient oracle, i.e,

s = s(xg; &) Yk >0

12



Note that

E[lls(z; £)113] = Ee[ll fe () ZHf I3

1 m
SEZ

and
€ €

A= = —
20M2+0%)+L  10M2

since (M, L) = (M,0) and o = 2M (see Remark 3 on page 2)

Complexity of the stochastic SM:

d2M?

Complexity of the deterministic SM:

B M
o(%)

where M is a constant such that

e.g.,

m

M? = sup{|| f'(x)||2 : @ € dom R}
— Zf;

2=i2 (inf )l )
S

1F (@)1 =

It is easy to see that
M2
M?
So, the stochatic SM performs more iterations in general but requires
less subgradient per iteration (one versus m)

€ [1,m)]

13



Example: Consider

fi(x) = {as, ) +b| Vi=1,....m

Then
a; if <&Z',33'> +b; >0
[—ai, CLi] lf (ai,x) + bz = 0
Then
M; = ||ai|2
and
- 1 & 1 1 &
M? = — AP = =|AlZ = = N (AAT
o 2l = AL = 23 aa”)
where

A=lay---a,) € R™™

On the other hand every s € df(z) is of the form

1 m
s = m ;piﬁli

where p; € [0,1] for every i = 1,...,m. Hence
1
vm

where p = (p1,...,pm)T. So, we can take M such that

1 1 1
nﬂ=W%4s—Mmz—Mmmz 1Al
m m m

M2 = LA = L ana(AT4)
m m

So, )
M? _ 2111 Ai(ATA)

M2~ Ao (ATA) € 1,m]

14



5 Randomized block coordinate (RBC) methods

Consider the multiblock composite optimization sum (MCO) prob-
lem

¢y = inf{o(z) .= f(x) + h(z) : x € R"}

where

x=(x1,...,7) ER™ x ... xR™  h(z) :th‘(%) Vx € R"

and the following assumptions hold:
e h; € Conv (R™) for every i = 1,...,b

e function f € Conv (R™) and and for every ¢ = 1,...,b, there
exists L; > 0 such that

o+ Uid) < §(2) + {Vaf ), d) + 2]

for every # € R" and d; € R™, where V, f(x) is the i-th block
of Vf(z) and U; : R™ — R" is the linear map

Ul(dl) - (07--~7di707-~~70)

e optimal solution set X, is nonempty, and hence ¢, € R

15



5.1 Unaccelerated RBC Method

Unaccelerated Random Block Coordinate (U-RBC)
Method

(0) Let 2° = (29,...,2Y) € domh be given, and set k = 0

(1) choose & € {1,...,m} randomly according to the distribution
p=(p1,...,m) € Aﬂf’l and set

xk—i—l — l’k [gk]

where
a*i] == 2+ Ui(aF —2F) vi=1,....b

and

L;
i;f = argmin , {(Vl-f(xk), U — xf> + hi(u;) + ?HuZ — foQ}

(2) set k < k+ 1 and go to step 1.

Remark: The definition of z*[i] implies that its j-th block is equal
tox;? if j # i and is equal to 2% if j =i

Notation: For x = (21,...,2,) € R" and n = (m1,...,m) € RS,

define ,
lll2 = millaa)®
i=1

Proposition 5.1 If p; = 1/b for everyi=1,...,b, then

E6(H) — 6 < 7 [660) — 6+ |2 — 3] Ve e X,

where L = (Lq, ..., Ly)

Hence the e-iteration complexity of U-RBC is O(b/e), more specifi-

cally, . . ,
o, (s 2=t =l

€

16



Analysis

Let
A )
Then
1
#* = argmin ,, {(Vf(a:k),u — ") + h(u) + §Hu — a:kHQL}
. k 1 k|2

= argmin, { {y(u; 2") + h(u) + §Hu — x|
In the lemmas below, z, 7 and & denotes z*, 2**! and 2*, respec-
tively.

Lemma 5.2 For every u € dom h, have
1
Uy @) + h(w) + 5llu — 2|z
. . 1. 1 .
> (y(#52) + (@) + 318 — 2l + 5w — 23

Proof: This follows from the convex analysis result that I mentioned
at the beginning of the course. ]

Lemma 5.3 For every u € dom h, have

1 1 . . . ..
gl = 2llz = Slu = 2l% > | €5(#52) + (@) + S [12 — 22| = o(u)

Proof: Follows from the previous lemma and the fact that ¢(-) >
£5(5) + h() .

17



Lemma 5.4 Have

b

(@ 0) + h(E) + 5l — 2l > o) + 3 [6(e]) — o(2)]

=1

Proof: Have

. L.
(i) + 51 -

= @)+ Y {m-f(x), B — a) +

b

> f(@)+ 3 [f(ali]) - (o)

L; . 9
Shc- o]

= h(z) + Z [h(2[i]) — h()]

The conclusion of the lemma now follows by summing the above two
inequalities and using the fact that ¢ = f + h. [

18



Lemma 5.5 For every u € dom h, have

aw—ﬂﬁ—aw—ﬂﬁz<§]MWD—MM>+M@—¢M)

i=1

Proof: Follows trivially from Lemmas 5.3 and 5.4 [

Lemma 5.6 For everyn= (n,...,m) € R, and u € R™, have

2 2 R 2 2
E|llzl¢] - wll2] = o = ull} = & = ull?, - llz = ul?,
where £ € {1,...,b} is a random wvariable with distribution p =
(P15 P)-

Proof: Let u € R" be given. First note that for any o € R% and
i€ {l,...,b}, have

. 2 2 R
lzli] = ully, = |z = ully, = i (12 — wl|* = |2 — wall?)
Hence

E [|lafé] - ull}] — lle — ulf
_ (zpi ol - unz> el
= 3 b1 (Mol = wll2 = o = wll?)

b
= o (12 = will* = |z — wl]?)
=1
~ 2 2
=z = ull, = llz —ulj,

where the third equality is due to the first observation above and
the last one is due to the definition of || - ||4- "

19



Lemma 5.7 Assume that £ € {1,...,b} is a random variable with
distribution p = (p1,...,pp). Then, for every u € dom h, have

=~ ully ~E [lale] —ulf}]

1
2 ¢(z) = ¢w) + —

where n:= L/p and L = (L4, ..., Ly).

(E[p(x[¢]) = o(=)])

Proof: It follows from Lemma 5.5 and Lemma 5.6 with n = L/p
that

e = ull} —E |2lg) - ull}

(Lemma 5.6) = ||z — uH% — ||z — uH2L
b

(Lemma 5.5) > (Z[cb(fv[i]) - cb(l’)]) + ¢(z) — o(u)

i=1
Now, using the fact that ¢(z[i]) < ¢(x) for every i = 1,...,b, we
have

b

Pumin Y _[0(2[i]) — ¢(2)] = D pile(a[i]) — ¢(x)]

=1 =1

= E[¢(z[¢]) — o(2)]

The conclusion of the lemma now follows by combining the above
two relations. ]

20



Translated to the context of U-RBC, the above result has the fol-
lowing meaning.

Lemma 5.8 Let n = L/p. Then, for every u € R",

1 1
=l = 2B [~ ]
1

K1Y _ p(k
pminExk[cb(w ) — &(z")]

> ¢(2*) — p(u) +

Lemma 5.9 Let n = L/p and define
Or(u) == E [p(z") — o(u)]
97y 1/2
() = (B |[J* = u[|}] )

Then, for every u € R",

e ()] > Ou(u) + —

a 5 Pmin

S ()P () = Ou(w)

Proposition 5.10 If n = L/p then, for every u € R,
1

Pmin

1 1

i) < o ()] = 5ldin()? + ——o(c)

Proof: Summing the inequality in the previous lemma from k = 0
to k =k — 1, have

1 ) 1 2
L 000 = 4]+ o 0] = 3 ()
= 3 0;(u) > kb (u)

since O;_1(u) > Ox(u) for every k > 1. The conclusion of the propo-
sition immediately follows from the above inequality. [

21



Let us now express the above bound in terms of
do = d’LSt(iIfo, X*)

where the distance is in terms of || - ||.

Corollary 5.11 For every u € R",

1 1 L
Op(u) < ————— | = =) o — ull?
{0 < (e (3 () o= o+

o) - )]

min

Proof: Have

b

b
L;
[don ()] =l —ully =D millef —wl® =) p—lll’? — ui|*
i=1

i=1 *"
b
L L
< max (—) E |29 — w;|]* = ||ro — ul|* max (—)
p) = p

The result now follows from the above proposition and the definition
of Op(u). =

Corollary 5.12 For every u € R",

K b (B e+ s -
B[00 - 6. < (g s (5) 4 o)~ o

Proof: Follows from corollary above with u = Projy, (o) n

Remarks:

1) The above bound can be further refined to

1 Lnaxdy
E |:¢(37k> - Qb*} < 1+ k?pmm |: 9 0 + [(b(xo) - ¢*]1 .
2) If p, = 1/b for every i = 1,...,b then
b [ Liaxdg
B [o) - 6 < g |5 + fote?) - 0]

Question: What is the Lipschitz constant of V f(-) in terms of the
LZ"S?

22



5.2 Accelerated RBC Method

We start by stating the method

A-RBC Method
(0) Let 2° = (29,...,2Y) € domh be given, and set k = 0, ° =

.Z‘O, AO = 1/b2

(1) compute a; > 0 such that
a2 1
Ak + ay, N 1)2’
and set A N
Aps1 = Ay + ax, =k _ ARy T+ arr”
A

(2) choose & € {1,...,m} randomly according to the uniform

distribution p = (1/b,...,1/b) € ASI_)ZF, and compute

:Ek+1 — fk[gk};

1 b
k1 _ KL kY = 3, Ak (aF+ — k)
Agta

where
a:k[z] =a2F + Uz(fcf — xf),

L
fcf = argmin,, (ak [<sz(i'f>> U — i’f> + hz(uﬂ + 2_£”U - fo2>

(3) set k < k+ 1 and go to step 1

23



Proposition 5.13 Assume that n = L/p and p = (1/b,...,1/b).
Then, for every k > 0, the following statements hold:

a) have
k41 1 k+1 2
ApnE [o(y" ) = o(u)] + 5 E [Hx —uf }
< AE[6() - 6()] + 7 E [a* — u]’]

b) Ay > k?/4b?

Corollary 5.14 Assume thatn = L/p andp = (1/b,...,1/b). Then,
for every k > 0,

202
)< 37 et =l

E [6() — o(u)] < 25 o —ul] < 2

As a consequence,

2
E [6() — 6.] < T max(L)d}

Hence, the e-iteration complexity of A-RBC is O(b/+/¢), more specif-

ically,
L
O, <bd0 ma};( )>

24



Analysis

For simplicity, we assume that h is an indicator function of a closed
convex set

Lemma 5.15 Have
1
& = argmin,, (a’y(u) + %Hu — a:H%)

where
V() =Ly (5 2) + A()

Proof: Obvious. ]

Lemma 5.16 For every u € dom h, have

A

1 1
ay(2) + & = zllL < ay(w) + 55 llu =zl — ol — 2]

2b

Proof: This follows from the convex analysis result that I mentioned
at the beginning of the course. [

25



Lemma 5.17 For everyt=1,...,b, define
. _ 1 _ _ ba ,
il =&+ o (olil = 0) = 7 + 7 (ali] - )
Then, for every i =1,...,b, have
‘ A a
yli] = 1Y + wa[l]

where
xpli] = x + bUs(&; — ;) = . + b (x[i] — x)

Proof: We have

il =7+ ¢ (ali] - 2)
Ay+ax  ba .
==+ F(m[z] — )
Ay a ,
_F_’_F x—}-b(ﬂl]—ﬂcz

Lemma 5.18 We have %Zl.’zl xpli] = .

Proof: We have

and hence

S =

be[i] =+ % b(2 — x)] = 2.

26



Lemma 5.19 If y[i] € dom h, then

A (li]) < Ad(y) + a7 (@li) + 212, — P
where Y(u) = Lf(u; T).

Proof: Have

B(uli) < £l ) + hlylil) + 2 li] - 22

2
(definition of 5) = (yl]) + h(ufi) + 2 Iyl - 72
(h is indicator fct) = (yli]) + %Hy[i] — 7|
So,
Aol < A7 [0 + 5ol - 317
(by Lemma (5.17)) = A* [’y (%y 4 Fxb[i]) 4 %Hx[z]

Ly, ..
(convexity of 3) < A3(y) + aF(li]) + ol — 2

< Ap(y) + ar(aslil) + 2 el — ol

Lemma 5.20 If y[i] € domh for every i € {1,..., b}, have
ATEBOIE)] < A6() + ar(@) + ol — a2

Proof:

A*E[p(ylg)] = 4* (% > ¢<ym>>

1
(by Lemma 5.18) < Aé(y) + a¥ (Z) + %Hx — |3
. . N T
(since h(#) = 0) = Ad(y) + a7y (#) + 5 [|2 — =llz

27



Lemma 5.21 If y[i] € domh for every i € {1,...,b}, then

AE[6([8]) — 6(u)] < Alo(y) — ou)] + 57 (Ilu a3 u— 2[?)

Proof: Have

ATE [¢(y[¢])]
(Lemma 5.20) < A¢(y) + ay(z) + %Hi — |7
1 1
(Lemma 5.16) - < Ag(y) + av(u) + pllu — 2|z — 5w — 23

1 1
(y<0) < Ad(y)+ad(u) + llu— =l — 5 llu— 2z

The conclusion of the lemma now follows by subtracting A% ¢(u)
from both sides and using the fact that A™ = A + a. m

Lemma 5.22 For every n = (ny,...,m) € Rf’H and v € R", have

2 2 " 2 2
Ellzle) - ull2] = llo = ull} = & = ull}, — llz = ul,
where & € {1,...,b} is a random wvariable with distribution p =
(plu"‘apb)-

Hence, if n = bL and p; = 1/b for every i =1,...,b, then

o = ull} = 117 = ull} = = = ull} ~E |2lg] - ull}

Lemma 5.23 Assume that let n = bL. Then, for all u € R™,

ATE[D(E]) — 6(u)] + 57 [ofe] — ul?]

< Al(y) ~ ()] + o e — ul?

28



Feasibility of {y;}: Recall that we have assumed that
yli] € domh Vie{l,...,b}

Question: How to show this fact? Have

olil = oy + i
A
=yt Lot b(af] - o)
So
Atyt — Ay = afbzt — (b — 1)x]

Ak+1yk+1 - Akyk = Qg [bxkﬂ - (b - 1)$k]

Summing the above identity from £k =0 to k = k — 1, we have

Ayt — Ay = Z{a 2 — (b 1)a'] }
ag[bx' — (b —1)2% + Z {ai bt — (b—1)2'] }

k-1
aglbzt — (b — 1)agz’] + Z { by — ba;_i2t) + [bal_lxl — (b— 1)alxl]}
=1

N

-1
= ap[bx' — (b — 1)2°] + b(ag_12" — apx) + Y [baj_; — (b — 1)ay] 2
I=1

k—1
= bag_12" — (b — 1)agz’ + Z [ba;_1 — (b—1)a] 2"

=1

Take

This implies that

Since xg = 1o, the above identity simplifies to

k—1

Akyk = bak,lxk + Z [bal,1 — (b — 1)&1] l’l

=1
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k—1
Apy* = bagaa® + Y [bary — (b= Dai] 2

=1

We will show below that
baj_y —(b—1)a; >0 VIi>1 (%)
Thus the above relation shows that y* is a convex combination of
the points z!, ..., 2" € dom h. Hence, it follows that y* € dom h
Proof of (x): For simplicity, drop subscript . Want to show that
ba— —(b—1)a>0

Have

= A oA
“ " ba a—bza

So
A At
~—(h-1a=-"——(b—1)
ba (b—1)a - (b )62a

SRR

o [bA— (b - 1)A"]
1
ab?
:é[/l—(b—l)a]
:é[/ﬁ—ba} :b—z[j—b}

= 5 [PPa—1] 20

where the last inequality is due to the fact that

[bA— (b—1)(A+a)]

aZaozb—Q
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