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Def: f: R” — [—o0, o0] is differentiable at x € R" if f(x) € R
and there exists a linear map /(%) : R” — R such that
_ f(x+h)—f(x)—f'(x)h
lim
h—0 ||l

=0 (1)

Facts: If f is differentiable at X, then
1) f'(x) satisfying (??) is unique
2) x € int(dom ) where

domf :={x € R":f(x) < oo}



Def: Given function f : R" — IR, define the epigraph and strict
epigraph, respectively, as

epif :={(x,t) e R" xR : f(x) < t}
epi, f:={(x,t) e R" x R: f(x) < t}

Def: f: R” — R is said to be convex if its epigraph epif is a
convex set. The set of all such functions is denoted by
E-Conv(IR")



The following conditions about f : R" — IR are equivalent:
a) epif is a convex set (i.e., f € E-Conv(IR"))
b) epi, f is a convex set

c) for every xo,x1 € domf and « € (0,1), we have

f(lXXo + (1 = DC)Xl) < DCf(Xo) —+ (1 = DC)f(Xl)




Notation: Let

k
Ak::{(oco ..... Oék)EIRk_HIZtX,':l, DC,'EO},

i=0

Proposition
Let f : R" — R be given. Then, f € E-Conv(R") iff

f(lXoXo AF 0 oo —f—(Xka) < Dcof(Xo) AF o0 oo —f—Oékf(Xk),

for every xo, ..., xx € domf and (ag,...,ax) € Ak
In particular, for every xg, ..., x, € domf and
x € co{xg, ..., xk}, there holds

f(x) <max{f(x;):i=0,..., k}




Def: f: R" — R is proper if dom f # @ and f(x) > —oo for all
x € R". The set of all proper convex functions is denoted by
Conv(RR")

Def: f € Conv(IR") is closed if its epigraph is closed. The set of
all proper closed convex functions is denoted by Conv (R")



Definition
The indicator function é¢ : R” — [0, 0] of a set C C R" is

0 if x e C
+o0o otherwise

dc(x) 1:{

Obs: J¢ is convex (resp., proper convex) < C is convex (resp.,
nonempty convex)

Definition

The support function o¢ : R" — [—00, 00] of C is

oc(x) :=sup{{x,c): c € C}

If C =@ then g¢ = —oo0; otherwise, o¢ € Conv (R")



Definition

f : R" — R is strictly convex if it is proper and, for every
xo #x1 € domf and « € (0,1),

f(lXXo + (1 = (X)Xl) < (Xf(Xo) + (1 = (X)f(Xl)




Def: For y > 0, define

Convy,(R") = {f : R" — (c0,00] : f — || - /2 € Conv(R")}
Conv, (R") = {f : R" — (c0,00] : f — || - ||*/2 € Conv (R")}

Clearly,

Convp(R") = Conv(R") Convy (R") = Conv (R")

Def: Function f € Conv,(IR") is called a p-strongly convex
function if u > 0, or simply, a y-convex function if y > 0



Def: Let f : R” — (—o0, 00| and nonempty convex set
C C domf be given. f is said to be strictly convex on C if
f + dc is strictly convex

Proposition

If f : R" — (—o0, 00| is strictly convex on a nonempty convex set
C, then
min{f(x) : x € C}

has at most one global minimum

Obs: Previous result does not guarantee the existence of a global
minimum but simply that there exists at most one (if any).



Def: For nonempty convex set C and yu > 0, define

Conv(C) :={f: C Cdomf, f+éc € Conv(R")}

Conv (C):={f:C Cdomf, f+éc € Conv (R")}

Convy (C) := {f: C Cdomf, f + ¢ € Conv,(R")}
Convy (C) := {f : C Cdomf, f 4 Jc € Conv, (R")}

Conv(C) (resp., Conv (C)) is the set of convex (resp., closed
convex) functions on C.



Proposition

Let 4 > 0 and C # @ be a convex set. If f € Convy, (C), then
the problem

f. .= inf{f(x) : x € C}

has a unique optimal solution x, and

f(x) > f*—i—ng—x*Hz Vx € C.




Proposition

Assume that f is differentiable on a convex set © # C C R".
Then, the following are equivalent:

(a) f is convex on C, or equivalently, for every x,x" € C and
t e (0,1),

F((1—t)x+tx') < (1—t)f(x)+ tF(x)
(b) for every x',x € C,
f(x') > f(x)+(VF(x),x' —x)
(c) forevery x',x € C,

(VF(x') = Vf(x),x'—x) >0




Proposition

Assume that f is differentiable on a convex set © # C C R".
Then, the following are equivalent:

(a) f is striclty convex on C, or equivalently, for every x,x" € C
such that x # x" and t € (0,1),

F((1—t)x+tx') < (1—t)f(x) + tF(x)
(b) for every x', x € C such that x" # x,
f(x") > f(x) + (VFf(x),x" = x);
(c) for every x',x € C such that x' # x,

(VF(x') = Vf(x),x'—x) >0




Proposition

Assume that f is differentiable on a convex set © # C C R".
Then, for any constant B € IR, the following are equivalent:

(a) £ =Bl -||?/2 is convex on C
(b) for every x',x € C,

F(x') 2 £(x) + (VF(x),x' = x) + §||x’ —x|* (%)
(c) forevery x',x € C,

(VF(x') = VF(x),x" —x) > pllx' — x|*

Letting £¢(x'; x) := f(x) + (Vf(x),x" — x), then (x) becomes

F() = (5 + Bl |2



Def: For m > 0, f is m-weakly convex on C if f + m|| - |?/2 s
convex on C. In such case, we say that m is a lower curvature of
fonC

Assume that f is differentiable on a convex set @ # C C R" and
let m > 0 be given. Then, the following are equivalent:

e f is m-weakly convex on C

e forall x,x' € C,
F(x) 2 €r(x'sx) = S X = x]?

e forall x,x' € C,

(VF(x') = VF(x),x' —x) > —ml|x" — x|

Proof: Follows from previous prop with § = —m



Definition

M € R is an upper curvature of f on C if

M
Sl =£()

is convex on C

Clearly, M € R is an upper curvature of f on C iff
M
F(x) < F(x) + (VF(x)x = x) + S = xIP ¥x' € C

or equivalently,

(VF(x') = VF(x),x' —x) < M||x" —x||*> ¥x,x' € C



Definition
f:IR" — (—o0, 00| is L-smooth on a nonempty convex set

C C R™if f is differentiable on C and Vf is L-Lipschitz
continuous on C, i.e.,

IVF(x") = VFx)|| < L|Ix = x|] x,x" € C

Proposition

Assume that f is L-smooth on a convex set @ # C C R". Then, L
is both a lower and an upper curvature of f on C, and hence f is
L-weakly convex on C




Assume f € Conv(IR") and x € dom f

Def: s € R" is called a subgradient of f at x if
f(x)>f(x)+(s,x—x) VxeR"

The set of all subgradients of f at x is denoted by 9f (x) and the
point-to-set map of (-) is called the subdifferential of f

Proposition
The following statements hold:

a) X is a global minimizer of
inf{f(x) : x € R"}

if and only if 0 € df (x)

b) for every x € dom f, the set df (x) is (possibly, empty) closed
convex

= = = = =




Assume that f : R"” — (—o0, 00| and X € dom f

Definition

The directional derivative of f at x along d € R" is

F(%; d) = lim f(x+td) — f(x)
" to t

whenever the above limit exists (possibly, equal to £00).

Proposition

If f is diffferentiable at x then, for every d € R", f'(x; d) exists
and

f'(x; d) = f'(x)d = (VFf(x),d)




Let f € Conv(R"), x € domf and d € R" be given. Then:

a) the function
f(x+td) —f(x)
t

t>0—

is non-decreasing
b) for every d € R", f'(x; d) is well-defined and

F(x: d) = inf f(x+td) —f(X)
' >0 t

c) f'(x; -) is convex




Relationship of subgradient and directional derivative
Assume that f € Conv(R") and x € dom f. Then,
f () ={s€R": (s,-) < f'(x; )}

and

cl [f'(x;-)] = sup{(s, ) : s € f(X)}




Proposition
Assume that f € Conv(R") and x € dom f. Then:
a) of (x) = @ if and only if there exists dy € R" such that

f,()_(; do) = —0
b) if x € ri(dom f), then df (x) # @ and
f'(x;d) =sup{(d,s):s € adf(x)}

c) x € int(dom ) if and only if 9f (x) is non-empty and
bounded, in which case

f'(x;d) = max{(d,s) : s € 9f (x)}




Subgradient versus differentiability

Proposition

Assume that f € Conv(RR") and x € dom . Then df(x) is a
singleton if and only if f is diferentiable at X, in which case

of (x) = {Vf(x)}




Def: The conjugate of a function f : R” — R is

f*(s) := sup (s,x) —f(x), VseR"

xeR"

Proposition

Let f : R" — IR be given. Then, the following statements hold:
a) f =+oo ifand only if f* = —oc0
b) if f(x°) = —oo for some x° € R”, then f* = +o0

c) if f # o0 and f is minorized by some affine function (e.g.,
f € Conv(R")), then f* € Conv (R")




Let f : R" — IR be given. Then:

a) —f*(0) = inf{f(x) : x € R"}
b) for every s € R”,
f*(s) = —inf{f(x) — (s,x) : x € R"}
=inf{BeER:f>(s,-)—pB}
and the infimum is achieved whenever f*(s) is finite

c) (Fenchel’s inequality) for any x,s € R",

*(s) > (x,s)—f(x)




Proposition

Let f € Conv(IR") and x € dom f be given. Then,

s €0f(x) < *(s) < (s,x) — f(x)

(or equivalently, f*(s) = (s, x) — f(x))




For functions f, g : R" — IR, vectors xg, so € R" and scalar
« € R, the following statements hold:

a) ifg="f+uw, theng* =f"—u

b) ifa >0 and g = af, then g*(s) = af*(s/a) for every
s € R"”

c) ifa #0 and g(x) = f(ax) for every x € R", then
g*(s) = f*(s/a) for every s € R"

d) if g(x) = f(x — xp) for every x € R", then
g (s) =1*(s)+ (s, xo) for every s € R"

e) ifg(x) =f(x)+ (x,s0) for every x € R", then
g (s) =f*(s—sp) for every s € R"

f) if f < g, then f* > g*




Proposition
If f € Conv (R") then

where f** 1= (f*)*

fr* = f

As a consequence, for every x € R,

f(x) =sup(s,x) — f*(s)

S




Assume that f € Conv (R"). Then,

s € If (x) <= x € of"(s)

As a consequence, 9f*(0) is equal to the set of minimizers of

inf{f(x) : x € R"}




Proposition

Assume that f € Conv (R"). Then, the following are equivalent:
a) f is p-convex
b) f* is (1/u)-smooth on R"

Application: Assume that h € Conv,, (R”) and D is a closed
convex set such that DN dom h # @. Define

g(x) = max(y, Ax) — h(y) VxeR"
yeD

Then, g is (||Al|?/u)-smooth



Let f € Conv(R"), x € dom f and ¢ > 0 be given

Definition

s € R" is called an e-subgradient of f at X if
f(x)>f(x)+(s,x—x)—¢ VxeR"

The set of all e-subgradients of f at x is denoted by 0.f(x) and
the point-to-set map 0.f(+) is called the e-subdifferential of f




Proposition

The following statements hold:

a) x is an e-minimizer of f, := inf{f(x) : x € R"}, i.e,

or equivalently,

if and only if 0 € 9,f(X)
b) 0.f(x) is a (possibly, empty) closed convex set




Relationship of e-subgradients and conjugate function

Proposition
Let f € Conv(IR"), x € dom f and s € R" be given. Then,

s € 0eF(x) == f*(s) < (s,x) — F(x) +e




Transportation formula for subgradient

Proposition

Let f € Conv(R"), x € dom f and s € R" be given and define
g:=1"(s)+ f(x) — (s,x)

Then, the following statements hold:
(a) if& < oo, then

g =min{e:s € 0:f(x)}

(b) if s € 0f (x) for some x € dom f, then s € 9:f(x) and

E=1f(x)—f(x)— (s, x —X) < o0




Proposition

If f € Conv(R") and A: R™ — R" is a linear map, then f o A is
convex and

0:(foA)(x) D A9 f(Ax) Vx € R™
and equality holds whenever

A(R™) Nri(domf) # @




Proposition

Iffi € Conv (R") fori=1,...,m, then f :=fi+ ...+ f is
convex and

df (x) DoA(x)+...+9fm(x) Vx eR"
and equality holds whenever

N, ri(domf) # @




