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Assume f € Conv(R") and x € dom f

Definition

s € R" is called a subgradient of f at x if
f(x)>f(x)+ (s,x—x) VxeR"

The set of all subgradients of f at X is denoted by df(x) and
the point-to-set map of (+) is called the subdifferential of f




Let f € Conv(IR"), x € dom f and ¢ > 0 be given

Definition
s € R" is called an e-subgradient of f at x if

f(x)>f(x)+(s,x—x)—¢ VxeR"

The set of all e-subgradients of f at X is denoted by d.f(X)
and the point-to-set map 9.f(+) is called the
e-subdifferential of f




Proposition
The following statements hold:
a) X is an e-minimizer of f, := inf{f(x) : x € R"}, i.e,
f(x)—fh <e
if and only if 0 € 0¢f (X)
b) 0:f(X) is a closed convex set (possibly empty)




Subgradient method

Consider the set optimization problem

f. = min{(f +dx)(x) : x € R"} = min{f(x) : x € X}

Assumption:
@ X C IR" is nonempty closed convex and f is convex on X

o there exists M > 0 with the following property: for every
x € X, there exists s(x) € 9f (x) such that ||s(x)|| < M

@ optimal solution set X, is nonempty, and hence f, € R



Subgradient method (SM)

0) xo € X is given

1) For k=0,1,2,..., do
o choose stepsize A, > 0 and set s, = s(xk)
® Xk41 = Prij(Xk — /\ksk)

Obs: SM is not descent, i.e., it does not necessarily satisfy
f(xk41) < f(xk) for every k.



Example: For a € (0, 1), consider
f(x1,x2) := |x1] + a|x]
whose global min is (0,0). Take x = (0,1). Then
£(0,1) =a, 0f(0,1) = [~1,1] x {a}

and hence s; = (17,a) € 9f(0,1) for all 7 € [~1,1]. Now, for any
A € (0,a71), we have

f(x—Asy) = £((0,1) — A(y,a)) = f(—Ay, 1 — Aa)
> Al + a(1 —Aa) = a+ A(|y] — a°).

Hence, if || > a2, have
f(x—Asy) >a=f(x) VAe(0,a?t)

which shows that sy is not a descent direction



Key result

Proposition

For every k > 0 and x, € X, have
M < lxic = xil|® = [xcrn — Xl + A% sl

where

Afk = f(Xk) - ﬂ 2 0

.

Hence, if A, > 0 is such that

< 20
k
s[>

then [lxi — .|| > [[xer1 — x|



Key result (continued)

Let dy denote the distance of xp to Xy, i.e.,

dy := HXO — PI’OjX* (X())H

Proposition
For every K > 0 and x, € X,

K K
2 Y M < lxo — xel® = llxkrr — 12+ Y AZllsell?
k=0 k=0

As a consequence,

K K
2y MAf < d+ Y A2 skl
k=0 k=0

Last part follows from first one with x, = Projx, (xo0)



SM with Polyak stepsize rule

Then
Azllskll? = AxAfy

and hence
K ) ) K
2 Z AAf < ||X0 —X*H — HXK+1 —X*H + Z A
k=0 k=0
or equivalently,
K

)\kAfk S ||Xo — X*H2 — HXK+1 - X*”2 (1)
k=0



The above ineq with x, = Projx, (xp) implies that

K
a5 > Y AAf
k=0
Moreover, ) )
Af, Af,
Ak, g .
SR PA R VE
Hence,
2 1 K 2 1 2
> > '
> k;Afk p(K+1) (inJ}QAfO
Thus ) ) )
M=d M=d
i < 0 < 0
<£"<'"Afk> SK+1- K



e {xx} is bounded
@ for any tolerance ¢ > 0 and for every
R M

K>

we have

Ok := min Af, < e
K k<K k >

Obs: This SM variant has e-iteration complexity O(M?2d3 /€?)



Drawback: Polyak rule requires f

Exerc: Show that {xx} converges to some point in X,



SM with constant stepsize

A=A>0 Vk>0

Then
Aillskll® = A%[|se]]? < A2M?
and hence
K
M0k (K +1) <2 Z e < d2 + ZA s ||

=0 k=0
+ (K + 1)A2Mm?

| /\



So, ,
d
20k < AM? 4+ ——90
k=AM TR
Take A = ¢/M?. Then
d2 M?
20 < e+ 2
€
So, if )
K > dgM
then Ok < ¢

Obs: It is not true that Ok converges to 0 nor that {xk} is
bounded as K — o



SM with adaptive stepsize

Take

Hence

Thus, K > (dg/\ﬂz)/e2 implies that Ok < ¢



SM with diminishing stepsize

The key result and the second assumption imply

K K K
2 MAf < dg+ Y AllselP < g+ MY AL
k=0 k=0 k=0

Hence ) ) K )
20, < dy + M=} o Ak
B Yo Ak
A sufficient condition for 8 — 0 as K — oo is that
K K 2
oA
)\k — 00, @ —0

K
k=0 Zk:O Ak



SM with diminishing stepsize (continued)

Taking A, = a/V'k where a > 0 implies that

K K
Z/\k%2a\/R, ZA,%%flogK
k=0 k=0

and hence
260 <1<dg+al\/lzlo K)
K=oUKk \a &
Taking a = dy/ M, have
doM
20 < 2= (1+log K)

2vVK



Proof of Key result

(Non-expansiveness of the projection operator) If X is a nonempty closed
convex set, then for every x, x' € X, have

[IProjx (x) — Projx (x")[| < [lx — |

To show the key result, it suffices to show that

Proposition

For every k > 0 and x € X, have

204 [ (xk) = F ()] < llxk = 1% = I — x| + AZ I sk|?

The key result follows from the above one with x = x,.



Proof of Key result (continued)

Proof: Let x € X be given. Have

i1 = I = | Projx (xic = Aksi) = x|
= || Projx (xx — Aksk) — Projx (x)||
< ||lxk — Aksk — x||

Hence

Ixks1 — x> = [lx = x> + AL sk |* + 24k {5k, x — xi)
< I = x|1? 4 A%l sell” + 27k [F (x) = £ (xi)]



