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Consider the problem

min f(z) + g(z)
st. Ax+ By=beR"

where f € Conv (R™) and g € Conv (R™). For a given p > 0, define

Ly(x,y:p) = f(@) + g(x) +p" (Aw + By = b) + £ || Ax + By — b|

1 Augmented Lagrangian Method

Algorithm 1 (ALM Method)

0. Let pg € R" be given.
1. Compute
(z,y) € Argmin v oy Ly(x',y"; po).
2. Set
p=po + p(Az + By —b)

3. Set py < p and go to step 1.

Optimality Conditions for (1)

0€df(x)+ A*[po + p(Az + By — b)]
0 € 9g9(y) + B*[po + p(Az + By — b)]

w:b—A;[;—By
p

or equivalently,

0€df(x)+ A%p

0 € dg(y) + B*p

o P =b— Ax — By
p



We will now see that ALM is an exact implementation of PPM for a certain

Bregman distance. Indeed, for any z = (z,y;p) € R” x R™ x R", define

0 0o A x of ()
T(z)=T(z,y;p):==| 0 0 B* y | +| 99(y)
-A -B 0 D b

and the distance generating function

1
w(z) = w(z,y;p) = 5lpl”
Then, it can be shown that T is maximal monotone and that

(d0)-4(2) = 5o~ poll

and

Also, (18) becomes
Vw(zg) — Vw(z)

p

eT(z)

This is the equation of an exact PPM with respect to the Bregman distance (3) and

prox stepsize A equal to p



2 Generalized HPE framework

Consider the MIP
0eT(z)

where T : R™ = R™ is maximal monotone.
Assume that for some semi-norm in R", the following conditions hold:

1) T740) #0
2) there exists m, M > 0 such that for every z,2’ € R", have
(dw)s(=") > T2 = =]

IVw(z') = V()" < M ||2" - 2|

where
|- 1" = sup{(:,v) : [[v]| < 1}

Condition 2) implies that

M
%Hz — z’||2 < (dw).(7) < ?Hz - z/||2 V2,2 € Z. (4)

Example: If

w(-) = (1/2)]- 115
where @ is a self-adjoint positive semidefinite linear operator, then w satisfies con-
dition 2 with (m, M) = (1,1).

Proposition 2.1. If Q : R™ — R" is a self-adjoint positive semidefinite linear
operator, then the semi-norm

-1 = Q)2
satisfies the following statements:
(a) dom | - ||* = Im(Q) and
1Qz]" =[] VzeR"
(b) if Q is invertible, then

Izl = (Q_lz,z>1/2 Vz € R"



Algorithm 2 (Inexact PPM framework with Bregman distance)

0. Let zo € R™ and o € [0,1] be given.
1. Find A > 0 and (z, Z,¢) € R™ x R™ x R, such that

V’lU(ZO)/\— Vw(z) c TE(E) (5)

(dw):(2) + Ae < o(dw)z,(2) (6)

2. Set zg + z and go to step 1.

Hence, sequence-wise, we have for every k > 1 that

Vw(zg—1) — Vw(zk)
Ak
(dw):(2k) + Aker < o(dw)s,, (2k) (8)

Tk -

€ T°%(Z) (7)

Proposition 2.2. (Pointwise) Assume that o < 1 and A\, > X\ for every k > 1.
Then, for every k > 1, there exists i < k such that

. 2M (1 +0)(dw)o 1
Il < e 2 ‘O<w)
and
(1+0)(dw)y (1
s (lawo_o(%)

where r; is as in (7) and

(dw)o := inf { (dw).,(z*) : 2* € T7'(0)}



For k > 1, define Ay := Zle A; and the ergodic iterate (Z§,7r¢,ef) as

k k k
sa 1 E 3 a 1 E a 1 E s za
2 = A7k 2 )\izi, T = rk 2 )\iri, € = Ai )\z (€i + <T’L'a Ri = Zk>) . (9)

ki

Theorem 2.3. (Ergodic convergence of the NE-HPE) For every k > 1, we
have
ri € T (Z})

and
L 2VZM(dwo)? . 3M\ [3(dw)g + oy
Irgle < DGO g < (20 [ AR
N m A
where
9k = ‘_Hllaxk(dw)ziﬂ(ii)' (10)

Moreover, the sequence {0y} is bounded under either one of the following situations:

(a) o <1, in which case

—~

dw)o

0, < :
kX 1_o’

(11)
(b) Dom T is bounded, in which case
2M
9k < 7[(d’w)0 + D]
m

where
D := sup {min{(dw)y(y'), (dw)y (y)} : y,y" € Dom T'}



3 ADDM

Algorithm 3 (ADMM)

0. Let (yo,po) € R™ x R” be given.

1. Compute
x € Argmin . L, (2, yo; po)- (12)
2. Compute
y € Argmin L, (x,y; po). (13)
3. Set
p=po+ p(Az + By — b)
4. Set (yo,po) < (y,p) and go to step 1.
Optimality Conditions for (17) and (18)
0 € df(z) + A%[po + p(Az + Byo — b))
0 € dg(y) + B*[po + p(Azx + By — b)]
bo— P =b— Az — By
p
or equivalently,
0€df(x)+ A™p
0 € dg(y) + B*p (14)
POo=P _ Ay — By
o
where
p=po+ p(Az + Byo — b)
Hence,
p—p=pB(y —yo) (15)
and so the second inclusion in (14) implies that
pB*B(yo —y) € 09(y) + B"p+ pB*B(yo — y)
=g(y) + B*[p+ B(yo — y)] = 99(y) + B"p
Thus, (14) is equivalent to
0edf(x)+ A™p
pB*B(yo —y) € 0g(y) + B*p (16)

Po—Pp
p

=b— Az — By



Defining
~ . 1 2, P 2
= ; = — =||B
fi= (@sd). (=) = 5ol + 515yl

and noting that
0
Vw(z) = | pB*By
p~'p
it follows that (16) is equivalent to
Vw(zp) — Vw(z) € T(Z)

which shows that (5) is satisfied with e =0 and A = 1.
We will now show that (6) is also satisfied with e =0, A =1 and ¢ = 1. Indeed,
since € = 0, the left hand side of (6) becomes

(@0)-(2) + Ae = (@0).(2) = 55— ol = S8 = w) P

where the last equality is due to (15). On the other hand, since o = 1, the right
hand side of (6) becomes

- - 1, . P
0 (dw)z(2) = (dw)(2) = ypHp —poll” + S 11Bly — yo)II”
Thus, (6) holds withe =0, A\=1and o = 1.

Is the quantity 6 in (10) bounded? Since o = 1, this fact is not clear. Note
that

- 1
(dw)=4(2) = 515 = pol” + 511 Bly — y0)

L p
< (117 = pII* + o = pol*] + S I1B(y = vo)I”
1 p
= [P 1By = yo)lI* + > = pol "] + S 1By = vo)I”

1 3
= o= poll* + 1By = o) < 3(dw) (2)

< 6[(dw)s, (%) + (dw).(=")]

Since the quantity (dw),(z*) remains bounded (why?), it follows that (dw),, (%)
also remains bounded, and so does the quantity ) in (10)



4 Proximal ADMM

Algorithm 4 (Proximal ADMM)
0. Let 8 > 0, (yo,p0) € R™ x R", and positive-semidefinite self-adjoint linear

operators G and ‘H be given.

1. Compute

v € Avgmin . Ly(a', yoi o) + 5o — zi a3 a7)
2. Compute

y € Argmin /L, (x,y;po) + %Ily — Y1l (18)
3. Set

p =po+0p(Ax + By — b)

4. Set (yo,p0) < (y,p) and go to step 1.

Theorem 4.1. (Pointwise convergence of the proximal ADMM) Consider
the sequence {(xk,yr,pr)} generated by the proximal ADMM with 0 € (0, (v/5 +

1)/2), and let {Z} be defined as

Pr = Pr—1 + p(Azy, + Byr—1 — b). (19)
Then, for every k € N,
G(zk-1 — xk) Of (z) + APy
(H +pB*B)(yk—1 —yk) | € | 9g(yr) + B*px (20)
(Pe—1 — pr)/(p0) Azy + Byg — b

and there exists i < k such that

) 5 1 2 1
(”xH — mill? + it — villPrspmem) + 36 lpi—1 _pi”)() -0 (E)



5 Chambolle and Poch algorithm

Consider the problem

(P)  minmax (Kz,y) + G(z) = F*(y)

where G € Conv (R"), F' € Conv (R™), K : R™ — R™ is linear. The problem (P)
is equivalent to
min F(Kz)+ G(z)

and has the dual formulation

mfuxmyin (Kz,y) + G(x) — F*(y) = ¢(x,y)

or equivalently

max —G*(—K"y) — F*(y).
y

Furthermore, assume that there exists (z*,y*) € R™ x R™ such that

—Kz*+0F*(y*) >0, K'y*+0G(x*)>0

or equivalently

(0’0) €0 [w(7y*) - w(x*’ )] (Z‘*,y*)

Algorithm 5 (Chambolle-Poch (CP) Algorithm)

0. Choose 71,72 >0, 0 =1, (po,qo) € R™ x R™ and set pp = pg and k =1
1. compute

@k = (I + 720F" ) (qru—1 + T2 KPr—1)
=1 +70G)  (pr—1 — K" qx)
Pk =Dk + 0(pr — Pr—1)

2. set k < k+ 1 and go to step 1.

‘We have
qk — qk—1
T2

PP 4 K g+ 0G () 3 0 (22)
1

— Kpr—1+0F"(qx) 20 (21)

Proposition 5.1. The CP algorithm is an instance of the inexact IPP framework
with 02 := | K||*r17o.

Fix £ > 1 and let

Tp =Dk, Tk =0Dk, Ur=q

Then, (22) implies that

Te—1 — Tk - -
TR TR e K*
g €K+ G (7r)

10



and (21) implies that

0e % — Kpr—1 + OF" (qi)
= T 4 K (P~ peon) + Kok~ p) — Kpic+0F" (a1)
= % + K (pk — Pr—1) — 0K (pk — pr—1) — Kpi, + OF" (qi)
_ %—Tij/k*l — K&+ OF* (i)

where
Yk = qr + T2 K [Py — Opx)
Now, consider the distance generating function
1 1
w(z,y) = —|=l> + =yl
T1 T2
Then, if z = (zk, yr), 2 = (Zk, Ux) and 20 = (Tg—1,Yk—1), then
- 1 - 1 5 1 1
(dw).(2) = —|lzx — Txl]> + —llye — Tll* = =100k — pll* + —lyx — axl®
T1 T2 T1 T2
1 —9)2 1 - 1-0)? _
= O 2+ Lk - 0912 = SO 2 4 el 21 — Ol
T1 T2 T1

1—6)?
= O Pl — B

Also,

B 1 ~ 1 N
(dw)zo(2) = —llwp—1 — Zl1* + =llyr—1 — Fel®
T1 T2

v

N 1
—lzp—1 — C1”f1<||2 = —||0pr—1 _pkH2
T1 T1
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6 A block-decomposition algorithm

Algorithm 6 (Block-Decomposition Algorithm)

0. Choose 71,72 > 0, (po,qo) € R™ x R™ and set k =1
1. Compute

Ge = (I +10F*) Nqp_1 + 2 Kpp_1)
= (I +710G) (pr—1 — K" k)
Q@ = Gx + 72K [pr, — pr—1]

2. Set k< k+ 1 and go to step 1

Have

qk — qk—1
T2

Pk — Pk-1
T1

— Kpr_1 —l—aF*((jk) 350 (23)
b K*G+ 0G(pr) 3 0 (24)

Fix £ > 1 and let
Ty =Tk =Pks Uk =qk, Yk = Gk
Then, (24) implies that

Tp_1— X . -
SREL TR ¢ K + 0G(Fk)
T1
and (23) implies that
0 B — Kppoy + 9F" (@)
2
Qk — qk—1 * [~
==+ K(pr — px—1) — Kpr + OF* (x)
2
T2 T2
qr — qk— %/~
= L Ky + OF* (g1
T2
_ Ye — Yr—1 *Kﬂ?k +6F*(gk)
T2
and hence that
Yk—1 — Yk

€ —K#y + OF* (k)
T2
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Now, consider the distance generating function

1 1
w(@.y) = = ol + =~y

Then, if z = (zx,yx), 2= (Tr, Jx) and 20 = (Tx—1,Yx—1), then

1 1 1
dw), (3 a2 a2 _ A2
(@)(2) = —llas = 2l + —llpe = Gl = o —

1
= gHTzK(Pk — 1) |I? < | K| lpr — pr—1|?

Also,
5 1 =2, 1 ~ 112
(dw)zy(2) = —llwe—1 — Zell” + —llye—1 — Tkl
T1 T2
1 - 1
> —lar-1 — &> = —llpr—1 — prll?
T1 T1
Hence, if
o:=nn|K|*<1
then

~ (<) ~
(dw)=(2) < 2| K[ |pr — pr—a|* = p 0 = pr—1lf® < o(dw)z ()

Hence, the two conditions for the IPP framework holds with e =0 and A =1
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