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1 The problem and assumptions

Let Ξ denote the support of random vector ξ and consider the CO problem

ϕ∗ = min{ϕ(x) := f(x) + h(x) : x ∈ Rn} (1)

where:

(A1) h ∈ Convµ (Rn) for some µ ≥ 0;

(A2) f ∈ Conv (Rn) is such that dom f ⊃ domh;

(A3) for almost every ξ ∈ Ξ, a functional oracle F (·, ξ) : domh → R and a
stochastic subgradient oracle s(·, ξ) : domh→ Rn satisfying

f(x) = E[F (x, ξ)], f ′(x) := E[s(x, ξ)] ∈ ∂f(x)

for every x ∈ domh are available;

(A4) there exist constants M,L, σ ≥ 0 such that

∥f ′(x̃)− f ′(x)∥ ≤ 2M + L∥x̃− x∥ ∀x, x̃ ∈ domh

and
E
[
∥s (x; ξ)− f ′(x)∥2

]
≤ σ2 ∀x ∈ domh;

(A5) the set of optimal solutions X∗ of (1) is nonempty.

Remarks:

1) condition (A2) does not require F (·, ξ) to be convex.

2) condition (A3) implies that

0 ≤ f(x̃)− ℓf (x̃;x) ≤ 2M∥x̃− x∥+ L

2
∥x̃− x∥2 (2)

where

ℓf (x̃;x) = f(x) + ⟨f ′(x), x̃− x⟩
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3) Assume that there exists M̃ ≥ 0 such that

E[s(x; ξ)∥2] ≤ M̃2.

We will show that the above condition implies that condition (A3) holds
with (M,L) = (M̃, 0) and σ = 2M̃ .

Indeed, for every x ∈ domh,

∥f ′(x)∥ = ∥E[s(x, ξ)]∥ ≤ E [∥s(x, ξ)∥]

≤
(
E
[
∥s(x, ξ)∥2

])1/2 ≤ M̃

This implies that the first inequality in (A4) holds withM = M̃ and L = 0.
Moreover, we have

E
[
∥s(x, ξ)− f ′(x)∥2

]
≤ E

[
2∥f ′(x)∥2 + 2∥s(x, ξ)∥2

]
≤ 2∥f ′(x)∥2 + 2E

[
∥s(x, ξ)∥2

]
≤ 2M̃2 + 2M̃2 = 4M̃2 = σ2

which shows that the second inequality in (A4) holds with σ = 2M̃

The two inequalities above are due to:

Remark: If g : Rn → R is convex and X(ξ) is a random variable, then

g(Eξ[X(ξ)]) ≤ Eξ[g(X(ξ))]

or simply
g(E[X]) ≤ E[g(X)]
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2 Stochastic CS method

Let

ℓ̃f (x̃;x, s) = f(x) + ⟨s, x̃− x⟩.

Stochastic composite subgradient method

(0) Let x0 ∈ domh be given, and set k = 0 and

λ :=
ε

2 (M2 + σ2) + εL
; (3)

(1) take a sample ξk of r.v. ξ which is independent from the previous samples
ξ0, . . . , ξk−1 and set sk = s(xk, ξk);

(2) compute

xk+1 = argmin

{
ϕ̃λ
k(x) := ℓ̃f (x;xk, sk) + h(x) +

1

2λ
∥x− xk∥2

}
(4)

where ℓ̃f (x;xk, sk) = f(xk) + ⟨sk, x− xk⟩;

(2) set k ← k + 1 and go to step 1.

Let Exk
[·] denote expectation of [·] conditioned on xk.

Remark:

1) relation (3) implies that

(M2 + σ2)λ

1− λL
=

ε

2
(5)

2) In view of (A2), have:
Exk

[sk] = f ′(xk)

and hence
Exk

[ℓ̃f (x;xk, sk)] = ℓf (x;xk) ∀x ∈ Rn (6)

Moreover,
Exk

[∥sk − f ′(xk)∥2] ≤ σ2 (7)
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3 Complexity analysis

Lemma 3.1 For every k ≥ 0 and x ∈ domh, we have

E[ϕ̃λ
k(xk+1)]− ϕ(x) ≤ 1

2λ
d2k(x)−

1

2

(
1

λ
+ µ

)
d2k+1(x).

where
d2k(x) := E

(
∥x− xk∥2

)
∀k ≥ 0.

Proof: Since the function ϕ̃λ
k defined in (3) is (λ−1 + µ)-strongly convex, it

follows from (3) that

ϕ̃λ
k(xk+1) ≤ ϕ̃λ

k(x)−
1

2

(
1

λ
+ µ

)
∥x− xk+1∥2

= ℓ̃f (x;xk, sk) + h(x) +
1

2λ
∥x− xk∥2 −

1

2

(
1

λ
+ µ

)
∥x− xk+1∥2.

Taking expectation conditioned on xk, using (6), the definition of ϕ in (1) and
the fact that ℓf (·;xk) ≤ f(·), have

Exk
[ϕ̃λ

k(xk+1)] ≤ ℓf (x;xk) + h(x) +
1

2λ
∥x− xk∥2 −

1

2

(
1

λ
+ µ

)
Exk

(
∥x− xk+1∥2

)
≤ ϕ(x) +

1

2λ
∥x− xk∥2 −

1

2

(
1

λ
+ µ

)
Exk

(
∥x− xk+1∥2

)
.

The lemma follows by taking expectation of the above inequality.
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Lemma 3.2 For every k ≥ 0, we have

E
[
ϕ̃λ
k(xk+1)

]
≥ E[ϕ(xk+1)]−

ε

2

Proof: Using (2) and the definitions of ϕ and ϕ̃λ
k in (1) and (3),

respectively, we conclude that for every x ∈ domh,

ϕ̃λ
k(x) = ℓ̃f (x;xk, sk) + h(x) +

1

2λ
∥x− xk∥2

= ℓf (x;xk) + h(x) +
1

2λ
∥x− xk∥2 + ⟨sk − f ′(xk), x− xk⟩

≥
(
f(x)− L

2
∥x− xk∥2 −M∥x− xk∥

)
+ h(x) +

1

2λ
∥x− xk∥2 + ⟨sk − f ′(xk), x− xk⟩

≥ ϕ(x) +
1

2

(
1

λ
− L

)
∥x− xk∥2 − (M + ∥sk − f ′(xk)∥) ∥x− xk∥

≥ ϕ(x) + min
t∈R

{
1

2

(
1

λ
− L

)
t2 − (M + ∥sk − f ′(xk)∥) t

}
= ϕ(x)− (M + ∥sk − f ′(xk)∥)2λ

2(1− λL)

≥ ϕ(x)− (M2 + ∥sk − f ′(xk)∥2)λ
1− λL

.

Taking x = xk+1, have

ϕ̃λ
k(xk+1) ≥ ϕ(xk+1)−

(M2 + ∥sk − f ′(xk)∥2)λ
1− λL

.

Taking expectation conditioned on xk, and using (5) and (7), have

Exk

[
ϕ̃λ
k(xk+1)

]
≥ Exk

[ϕ(xk+1)]−
(M2 + σ2)λ

1− λL
= Exk

[ϕ(xk+1)]−
ε

2
.

The lemma follows by taking expectation of the above inequality.
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Lemma 3.3 For every k ≥ 0 and x ∈ domh, we have

E [ϕ(xk+1)]− ϕ(x) ≤ 1

2λ
d2k(x)−

1

2

(
1

λ
+ µ

)
d2k+1(x) +

ε

2

Proof: This result follows by combining Lemmas 3.1 and 3.2.

Consider the case where µ = 0 and define

x̄k :=
1

k

k∑
i=1

xi

Then, Lemma 3.3 implies that

ϕ(x) +
ε

2
+

d20(x)− d2k(x)

2kλ
≥ 1

k

k∑
i=1

E[ϕ(xi)]

= E

[
1

k

k∑
i=1

ϕ(xi)

]
≥ E

[
ϕ

(
1

k

k∑
i=1

xi

)]
= E [ϕ (x̄k)]

Taking x = ProjX∗(x0), have

E [ϕ (x̄k)− ϕ∗] ≤
ε

2
+

d20
2kλ

Final complexity:

O1

(
d20
λε

)
= O1

(
d20

[
M2 + σ2

ε2
+

L

ε

])
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Consider now the case where µ > 0. Recall that

E [ϕ(xk)]−ϕ(x) ≤ 1

2λ
d2k−1(x)−

1

2

(
1

λ
+ µ

)
d2k(x)+

ε

2
∀k ≥ 1 (∗)

Lemma 3.4 Let {tk} and {αk} be sequence of nonnegative scalars
satisfying

tk ≤ αk−1 − θαk + δ ∀k ≥ 1. (8)

for some positive scalars θ and δ > 0, and define

Tk :=
1

Θk

k∑
i=1

θi−1ti, Θk :=
k∑

i=1

θi−1 (9)

Then, for every k ≥ 0,

Tk ≤
α0 − θkαk

Θk

+ δ

Proof: Have

ΘkTk =
k∑

i=1

θi−1ti ≤
k∑

i=1

θi−1 (αi−1 − θαi + δ)

=
k∑

i=1

(
θi−1αi−1 − θiαi + θi−1δ

)
= α0 − θkαk +

k∑
i=1

θi−1δ ≤ α0 − θkαk +Θkδ̄.

Remark: Relation (∗) implies that (8) holds with

θ = (1 + λµ), δ =
(M2 + σ2)λ

(1− λL)
,

αk =
1

2λ
d2k(x), tk = E[ϕ(xk)]− ϕ(x),

Lemma 3.4 then implies that

1

Θk

k∑
i=1

θi−1 [E[ϕ(xi)]− ϕ(x)]

≤ 1

2Θkλ

(
d20(x)− θkd2k(x)

)
+

ε

2
(10)
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Lemma 3.5 Let {x̄k} ⊂ domh be a random sequence such that for
every k ≥ 1,

E[ϕ(x̄k)] ≤
1

Θk

k∑
i=1

θi−1E[ϕ(xi)] (11)

where Θk is as in (9) with θ := (1+µλ). Then, for every k ≥ 0 and
x ∈ domh, we have

E[ϕ(x̄k)]− ϕ(x) ≤ 1

2Θkλ

(
d20(x)− θkd2k(x)

)
+

ε

2

and
Θk ≥ max

{
k, θk−1

}
.

Proof: Follows from (10) and (11) that

[E[ϕ(x̄k)]− ϕ(x)] ≤ 1

Θk

k∑
i=1

θi−1 [E[ϕ(xi)]− ϕ(x)]

≤ 1

2Θkλ

(
d20(x)− θkd2k(x)

)
+

ε

2
,

and hence that the lemma holds.
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Taking

x̄k :=
1

Θk

k∑
i=1

θi−1xi

and x = ProjX∗(x0), we obtain

E [ϕ (x̄k)− ϕ∗] ≤
ε

2
+

d20
2Θkλ

≤ ε

2
+

d20
2θk−1λ

Final complexity:

O1

(
1

θ − 1
log+1

(
d20
λε

))
= O1

((
1 +

1

µλ

)
log+1

(
d20
λε

))
= O1

([
1 +

M2 + σ2

εµ
+

L

µ

]
log+1

(
d20

[
M2 + σ2

ε2
+

L

ε

]))
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Let w be a ν-distance generating function for domh

Stochastic Prox Mirror method

(0) Let x0 ∈ domh be given, and set k = 0 and

λ :=
ε

4 (M2 + σ2) + εL
;

(1) take a sample ξk of r.v. ξ which is independent from the pre-
vious samples ξ0, . . . , ξk−1 and set sk = s(xk, ξk);

(2) compute

xk+1 = argmin

{
ℓ̃f (x;xk, sk) + h(x) +

1

λ
dw(x;xk)

}
where ℓ̃f (x;xk, sk) = f(xk) + ⟨sk, x− xk⟩;

(2) set k ← k + 1 and go to step 1.

Up to the constant ν which also shows up in the complexity, the
final iteration-complexity bound is similar to the one above
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4 Application

Consider the finite sum problem (FSP)

ϕ∗ := inf{ϕ(x) := f(x) + h(x) : x ∈ Rn}

where

f(x) :=
1

m

m∑
i=1

fi(x) ∀x ∈ Rn

and the following assumptions hold:

• h ∈ Conv (Rn)

• for every i = 1, . . . ,m, function fi ∈ Conv (Rn) and dom fi ⊃
domh;

• for every i = 1, . . . ,m, there exists a function f ′
i : domh→ Rn

satisfying the following properties:

– f ′
i(x) ∈ ∂fi(x) for all x ∈ domh

– there exists Mi ≥ 0 such that for every x ∈ domh,

∥f ′
i(x)∥∗ ≤Mi (12)

• optimal solution set X∗ is nonempty, and hence ϕ∗ ∈ R
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Stochastic CSM for FSP

0) Let x0 ∈ domh be given, and set k = 0 and

λ :=
ε

10M̃2
, M̃ =

√√√√ 1

m

m∑
i=1

M2
i ;

1) choose ξk ∈ {1, . . . ,m} randomly with uniform distri-
bution and set

sk = f ′
ξk
(xk)

2) compute

xk+1 = argmin

{
ℓ̃f (x;xk, sk) + h(x) +

1

2λ
∥x− xk∥2

}
where

ℓ̃f (x;xk, sk) = f(xk) + ⟨sk, x− xk⟩

3) set k ← k + 1 and go to step 1.

Let ξ denote the random variable which takes value i with prob-
ability 1/m for every i ∈ {1, . . . ,m}, and define

s(x; ξ) := f ′
ξ(x) ∀x ∈ domh

Function s(·; ·) is a stochatic subgradient since for every x ∈ Rn,
have

Eξ[s(x; ξ)] = Eξ[f
′
ξ(x)] =

1

m

m∑
i=1

f ′
i(x) ∈

1

m

m∑
i=1

∂fi(x) = ∂f(x)

Clearly, the above method is the stochastic CSM with the above
subgradient oracle, i.e,

sk = s(xk; ξk) ∀k ≥ 0
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Note that

E[∥s(x; ξ)∥2∗] = Eξ[∥f ′
ξ(x)∥2∗] =

1

m

m∑
i=1

∥f ′
i(x)∥2∗

≤ 1

m

m∑
i=1

M2
i = M̃2

and

λ =
ε

2(M2 + σ2) + L
=

ε

10M̃2

since (M,L) = (M̃, 0) and σ = 2M̃ (see Remark 3 on page 2)

Complexity of the stochastic SM:

O

(
d20M̃

2

ε2

)

Complexity of the deterministic SM:

O
(
d20M

2

ε2

)
where M is a constant such that

M2 ≥ sup{∥f ′(x)∥2∗ : x ∈ domh}

e.g.,

∥f ′(x)∥2∗ =

∥∥∥∥∥ 1

m

m∑
i=1

f ′
i(x)

∥∥∥∥∥
2

∗

=
1

m2

(
m∑
i=1

∥f ′
i(x)∥∗

)2

≤ 1

m2

(
m∑
i=1

Mi

)2

=: M2

It is easy to see that
M̃2

M2
∈ [1,m]

So, the stochatic SM performs more iterations in general but requires
less subgradient per iteration (one versus m)
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Example: Consider

fi(x) = |⟨ai, x⟩+ bi| ∀i = 1, . . . ,m

Then

∂fi(x) =

 ai if ⟨ai, x⟩+ bi > 0
−ai if ⟨ai, x⟩+ bi < 0

[−ai, ai] if ⟨ai, x⟩+ bi = 0

Then
Mi = ∥ai∥2

and

M̃2 =
1

m

m∑
i=1

∥ai∥2 =
1

m
∥A∥2F =

1

m

m∑
i=1

λi(AA
T )

where
A = [a1 · · · am] ∈ Rn×m

On the other hand every s ∈ ∂f(x) is of the form

s =
1

m

m∑
i=1

piai

where pi ∈ [0, 1] for every i = 1, . . . ,m. Hence

∥s∥ =
∥∥∥∥ 1

m
Ap

∥∥∥∥ ≤ 1

m
∥Ap∥ ≤ 1

m
∥A∥∥p∥ ≤ 1√

m
∥A∥

where p = (p1, . . . , pm)
T . So, we can take M such that

M2 =
1

m
∥A∥2 = 1

m
λmax(A

TA)

So,
M̃2

M2
=

∑m
i=1 λi(A

TA)

λmax(ATA)
∈ [1,m]
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5 Randomized block coordinate (RBC) methods

Consider the multiblock composite optimization sum (MCO) prob-
lem

ϕ∗ := inf{ϕ(x) := f(x) + h(x) : x ∈ Rn}
where

x = (x1, . . . , xb) ∈ Rn1 × . . .× Rnb , h(x) :=
m∑
i=1

hi(xi) ∀x ∈ Rn

and the following assumptions hold:

• hi ∈ Conv (Rni) for every i = 1, . . . , b

• function f ∈ Conv (Rn) and and for every i = 1, . . . , b, there
exists Li ≥ 0 such that

f(x+ Uidi) ≤ f(x) + ⟨∇if(x), di⟩+
Li

2
∥di∥2

for every x ∈ Rn and di ∈ Rni , where ∇if(x) is the i-th block
of ∇f(x) and Ui : Rni → Rn is the linear map

Ui(di) = (0, . . . , di, 0, . . . , 0)

• optimal solution set X∗ is nonempty, and hence ϕ∗ ∈ R
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5.1 Unaccelerated RBC Method

Unaccelerated Random Block Coordinate (U-RBC)
Method

(0) Let x0 = (x0
1, . . . , x

0
b) ∈ domh be given, and set k = 0

(1) choose ξk ∈ {1, . . . ,m} randomly according to the distribution

p = (p1, . . . , pb) ∈ ∆
(b)
++ and set

xk+1 = xk[ξk]

where
xk[i] := xk + Ui(x̂

k
i − xk

i ) ∀i = 1, . . . , b

and

x̂k
i = argmin ui

{
⟨∇if(x

k), ui − xk
i ⟩+ hi(ui) +

Li

2
∥ui − xk

i ∥2
}

(2) set k ← k + 1 and go to step 1.

Remark: The definition of xk[i] implies that its j-th block is equal
to xk

j if j ̸= i and is equal to x̂k
i if j = i

Notation: For x = (x1, . . . , xb) ∈ Rn and η = (η1, . . . , ηb) ∈ Rb
++,

define

∥x∥2η =
b∑

i=1

ηi∥xi∥2

Proposition 5.1 If pi = 1/b for every i = 1, . . . , b, then

E[ϕ(xk)− ϕ∗] ≤
b

b+ k

[
ϕ(x0)− ϕ∗ + ∥x0 − x∗∥2L

]
∀x∗ ∈ X∗

where L = (L1, . . . , Lb)

Hence the ε-iteration complexity of U-RBC is O(b/ε), more specifi-
cally,

O1

(
b

[
ϕ(x0)− ϕ∗ + ∥x0 − x∗∥2L

ε

])
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Analysis

Let
x̂k = (x̂k

1, . . . , x̂
k
b )

Then

x̂k = argmin u

{
⟨∇f(xk), u− xk⟩+ h(u) +

1

2
∥u− xk∥2L

}
= argmin u

{
ℓf (u;x

k) + h(u) +
1

2
∥u− xk∥2L

}

In the lemmas below, x, x+ and x̂ denotes xk, xk+1 and x̂k, respec-
tively.

Lemma 5.2 For every u ∈ domh, have

ℓf (u;x) + h(u) +
1

2
∥u− x∥2L

≥ ℓf (x̂;x) + h(x̂) +
1

2
∥x̂− x∥2L +

1

2
∥u− x̂∥2L

Proof: This follows from the convex analysis result that I mentioned
at the beginning of the course.

Lemma 5.3 For every u ∈ domh, have

1

2
∥u− x∥2L −

1

2
∥u− x̂∥2L ≥

[
ℓf (x̂;x) + h(x̂) +

1

2
∥x̂− x∥2L

]
− ϕ(u)

Proof: Follows from the previous lemma and the fact that ϕ(·) ≥
ℓf (·;x) + h(·)
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Lemma 5.4 Have

ℓf (x̂;x) + h(x̂) +
1

2
∥x̂− x∥2L ≥ ϕ(x) +

b∑
i=1

[ϕ(x[i])− ϕ(x)]

Proof: Have

ℓf (x̂;x) +
1

2
∥x̂− x∥2L

= f(x) +
b∑

i=1

[
⟨∇if(x), x̂i − xi⟩+

Li

2
∥x̂i − xi∥2

]

≥ f(x) +
b∑

i=1

[f(x[i])− f(x)]

Also,

h(x̂) = h(x) + [h(x̂)− h(x)] = h(x) +
b∑

i=1

[hi(x̂i)− hi(xi)]

= h(x) +
b∑

i=1

[h(x[i])− h(x)]

The conclusion of the lemma now follows by summing the above two
inequalities and using the fact that ϕ = f + h.
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Lemma 5.5 For every u ∈ domh, have

1

2
∥u− x∥2L −

1

2
∥u− x̂∥2L ≥

(
b∑

i=1

[ϕ(x[i])− ϕ(x)]

)
+ ϕ(x)− ϕ(u)

Proof: Follows trivially from Lemmas 5.3 and 5.4

Lemma 5.6 For every η = (η1, . . . , ηb) ∈ Rb
++ and u ∈ Rn, have

E
[
∥x[ξ]− u∥2η

]
− ∥x− u∥2η = ∥x̂− u∥2pη − ∥x− u∥2pη

where ξ ∈ {1, . . . , b} is a random variable with distribution p =
(p1, . . . , pb).

Proof: Let u ∈ Rn be given. First note that for any α ∈ Rb
++ and

i ∈ {1, . . . , b}, have

∥x[i]− u∥2α − ∥x− u∥2α = αi

(
∥x̂i − ui∥2 − ∥xi − ui∥2

)
Hence

E
[
∥x[ξ]− u∥2η

]
− ∥x− u∥2η

=

(
b∑

i=1

pi ∥x[i]− u∥2η

)
− ∥x− u∥2η

=
b∑

i=1

pi

(
∥x[i]− u∥2η − ∥x− u∥2η

)
=

b∑
i=1

piηi
(
∥x̂i − ui∥2 − ∥xi − ui∥2

)
= ∥x̂− u∥2ηp − ∥x− u∥2ηp

where the third equality is due to the first observation above and
the last one is due to the definition of ∥ · ∥α.
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Lemma 5.7 Assume that ξ ∈ {1, . . . , b} is a random variable with
distribution p = (p1, . . . , pb). Then, for every u ∈ domh, have

∥x− u∥2η − E
[
∥x[ξ]− u∥2η

]
≥ ϕ(x)− ϕ(u) +

1

pmin

(E [ϕ(x[ξ])− ϕ(x)])

where η := L/p and L = (L1, . . . , Lb).

Proof: It follows from Lemma 5.5 and Lemma 5.6 with η = L/p
that

∥x− u∥2η − E
[
∥x[ξ]− u∥2η

]
(Lemma 5.6) = ∥x− u∥2L − ∥x̂− u∥2L

(Lemma 5.5) ≥

(
b∑

i=1

[ϕ(x[i])− ϕ(x)]

)
+ ϕ(x)− ϕ(u)

Now, using the fact that ϕ(x[i]) ≤ ϕ(x) for every i = 1, . . . , b, we
have

pmin

b∑
i=1

[ϕ(x[i])− ϕ(x)] ≥
b∑

i=1

pi[ϕ(x[i])− ϕ(x)]

= E [ϕ(x[ξ])− ϕ(x)]

The conclusion of the lemma now follows by combining the above
two relations.
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Translated to the context of U-RBC, the above result has the fol-
lowing meaning.

Lemma 5.8 Let η = L/p. Then, for every u ∈ Rn,

1

2

∥∥xk − u
∥∥2
η
− 1

2
Exk

[∥∥xk+1 − u
∥∥2
η

]
≥ ϕ(xk)− ϕ(u) +

1

pmin

Exk [ϕ(xk+1)− ϕ(xk)]

Lemma 5.9 Let η = L/p and define

θk(u) := E
[
ϕ(xk)− ϕ(u)

]
dk,η(u) :=

(
E
[∥∥xk − u

∥∥2
η

])1/2
Then, for every u ∈ Rn,

1

2
[dk,η(u)]

2 − 1

2
[dk+1,η(u)]

2 ≥ θk(u) +
1

pmin

[θk+1(u)− θk(u)]

Proposition 5.10 If η = L/p then, for every u ∈ Rn,

θk(u) ≤
1

(1/pmin) + k

[
1

2
[d0,η(u)]

2 − 1

2
[dk,η(u)]

2 +
1

pmin

θ0(u)

]

Proof: Summing the inequality in the previous lemma from k = 0
to k = k − 1, have

1

pmin

[θ0(u)− θk(u)] +
1

2
[d0,η(u)]

2 − 1

2
[dk,η(u)]

2

=
k−1∑
i=0

θi(u) ≥ kθk(u)

since θk−1(u) ≥ θk(u) for every k ≥ 1. The conclusion of the propo-
sition immediately follows from the above inequality.
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Let us now express the above bound in terms of

d0 = dist(x0;X∗)

where the distance is in terms of ∥ · ∥.

Corollary 5.11 For every u ∈ Rn,

θk(u) ≤
1

(1/pmin) + k

[
1

2
max

(
L

p

)
∥x0 − u∥2 + 1

pmin

[ϕ(x0)− ϕ(u)]

]

Proof: Have

[d0,η(u)]
2 = ∥x0 − u∥2η =

b∑
i=1

ηi∥x0
i − ui∥2 =

b∑
i=1

Li

pi
∥x0

i − ui∥2

≤ max

(
L

p

) b∑
i=1

∥x0
i − ui∥2 = ∥x0 − u∥2max

(
L

p

)
The result now follows from the above proposition and the definition
of θ0(u).

Corollary 5.12 For every u ∈ Rn,

E
[
ϕ(xk)− ϕ∗

]
≤ 1

(1/pmin) + k

[
1

2
max

(
L

p

)
d20 +

1

pmin

[ϕ(x0)− ϕ∗]

]

Proof: Follows from corollary above with u = ProjX∗(x0)

Remarks:

1) The above bound can be further refined to

E
[
ϕ(xk)− ϕ∗

]
≤ 1

1 + kpmin

[
Lmaxd

2
0

2
+ [ϕ(x0)− ϕ∗]

]
.

2) If pi = 1/b for every i = 1, . . . , b then

E
[
ϕ(xk)− ϕ∗

]
≤ b

b+ k

[
Lmaxd

2
0

2
+ [ϕ(x0)− ϕ∗]

]
.

Question: What is the Lipschitz constant of ∇f(·) in terms of the
Li’s?
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5.2 Accelerated RBC Method

We start by stating the method

A-RBC Method

(0) Let x0 = (x0
1, . . . , x

0
b) ∈ domh be given, and set k = 0, y0 =

x0, A0 = 1/b2

(1) compute ak > 0 such that

a2k
Ak + ak

=
1

b2
,

and set

Ak+1 = Ak + ak, x̃k =
Aky

k + akx
k

Ak+1

(2) choose ξk ∈ {1, . . . ,m} randomly according to the uniform

distribution p = (1/b, . . . , 1/b) ∈ ∆
(b)
++, and compute

xk+1 = xk[ξk],

yk+1 = x̃k +
1

bak
(xk+1 − xk) = x̃k +

bak
Ak+1

(xk+1 − xk)

where

xk[i] = xk + Ui(x̂
k
i − xk

i ),

x̂k
i = argmin u

(
ak
[〈
∇if(x̃

k
i ), u− x̃k

i

〉
+ hi(u)

]
+

Li

2b
∥u− xk

i ∥2
)

(3) set k ← k + 1 and go to step 1
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Proposition 5.13 Assume that η = L/p and p = (1/b, . . . , 1/b).
Then, for every k ≥ 0, the following statements hold:

a) have

Ak+1E
[
ϕ(yk+1)− ϕ(u)

]
+

1

2b
E
[∥∥xk+1 − u

∥∥2
η

]
≤ AkE

[
ϕ(yk)− ϕ(u)

]
+

1

2b
E
[∥∥xk − u

∥∥2
η

]
b) Ak ≥ k2/4b2

Corollary 5.14 Assume that η = L/p and p = (1/b, . . . , 1/b). Then,
for every k ≥ 0,

E
[
ϕ(yk)− ϕ(u)

]
≤ 2b

k2

∥∥x0 − u
∥∥2
η
≤ 2b2

k2

∥∥x0 − u
∥∥2
L

As a consequence,

E
[
ϕ(yk)− ϕ∗

]
≤ 2b2

k2
max(L)d20

Hence, the ε-iteration complexity of A-RBC isO(b/
√
ε), more specif-

ically,

O1

(
bd0

√
max(L)

ε

)
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Analysis

For simplicity, we assume that h is an indicator function of a closed
convex set

Lemma 5.15 Have

x̂ = argmin u

(
aγ(u) +

1

2b
∥u− x∥2L

)
where

γ(·) := ℓf (·; x̃) + h(·)

Proof: Obvious.

Lemma 5.16 For every u ∈ domh, have

aγ(x̂) +
1

2b
∥x̂− x∥2L ≤ aγ(u) +

1

2b
∥u− x∥2L −

1

2b
∥u− x̂∥2L

Proof: This follows from the convex analysis result that I mentioned
at the beginning of the course.
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Lemma 5.17 For every i = 1, . . . , b, define

y[i] = x̃+
1

ba
(x[i]− x) = x̃+

ba

A+
(x[i]− x)

Then, for every i = 1, ..., b, have

y[i] =
A

A+
y +

a

A+
xb[i]

where
xb[i] = x+ bUi(x̂i − xi) = x+ b (x[i]− x)

Proof: We have

y[i] = x̃+
ba

A+
(x[i]− x)

=
Ay + ax

A+
+

ba

A+
(x[i]− x)

=
Ay

A+
+

a

A+

x+ b (x[i]− x)︸ ︷︷ ︸
xb[i]



Lemma 5.18 We have 1
b

∑b
i=1 xb[i] = x̂.

Proof: We have

xb[i] = x+ b (x[i]− x) = x+ bUi (x̂i − xi)

and hence
1

b

b∑
i=1

xb[i] = x+
1

b
[b(x̂− x)] = x̂.
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Lemma 5.19 If y[i] ∈ domh, then

A+ϕ(y[i]) ≤ Aϕ(y) + aγ̃ (xb[i]) +
Li

2
∥x̂i − xi∥2

where γ̃(u) = ℓf (u; x̃).

Proof: Have

ϕ(y[i]) ≤ ℓf (y[i]; x̃) + h(y[i]) +
Li

2
∥y[i]− x̃∥2

(definition of γ̃) = γ̃(y[i]) + h(y[i]) +
Li

2
∥y[i]− x̃∥2

(h is indicator fct) = γ̃(y[i]) +
Li

2
∥y[i]− x̃∥2

So,

A+ϕ(y[i]) ≤ A+

[
γ̃(y[i]) +

Li

2
∥y[i]− x̃∥2

]
(by Lemma (5.17)) = A+

[
γ̃

(
A

A+
y +

a

A+
xb[i]

)
+

Lib
2a2

2(A+)2
∥x[i]− x∥2

]
(convexity of γ̃) ≤ Aγ̃(y) + aγ̃(xb[i]) +

Li

2
∥x[i]− x∥2

≤ Aϕ(y) + aγ̃(xb[i]) +
Li

2
∥x[i]− x∥2

Lemma 5.20 If y[i] ∈ domh for every i ∈ {1, . . . , b}, have

A+E [ϕ(y[ξ])] ≤ Aϕ(y) + aγ(x̂) +
1

2b
∥x̂− x∥2L.

Proof:

A+E [ϕ(y[ξ])] = A+

(
1

b

b∑
i=1

ϕ(y[i])

)

≤ Aϕ(y) + a

(
1

b

b∑
i=1

γ̃ (xb[i])

)
+

1

2b
∥x̂− x∥2L

(by Lemma 5.18) ≤ Aϕ(y) + aγ̃ (x̂) +
1

2b
∥x̂− x∥2L

(since h(x̂) = 0) = Aϕ(y) + aγ (x̂) +
1

2b
∥x̂− x∥2L
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Lemma 5.21 If y[i] ∈ domh for every i ∈ {1, . . . , b}, then

A+E [ϕ(y[ξ])− ϕ(u)] ≤ A[ϕ(y)− ϕ(u)] +
1

2b

(
∥u− x∥2L − ∥u− x̂∥2L

)
Proof: Have

A+E [ϕ(y[ξ])]

(Lemma 5.20) ≤ Aϕ(y) + aγ(x̂) +
1

2b
∥x̂− x∥2L

(Lemma 5.16) ≤ Aϕ(y) + aγ(u) +
1

2b
∥u− x∥2L −

1

2b
∥u− x̂∥2L

(γ ≤ ϕ) ≤ Aϕ(y) + aϕ(u) +
1

2b
∥u− x∥2L −

1

2b
∥u− x̂∥2L

The conclusion of the lemma now follows by subtracting A+ϕ(u)
from both sides and using the fact that A+ = A+ a.

Lemma 5.22 For every η = (η1, . . . , ηb) ∈ Rb
++ and u ∈ Rn, have

E
[
∥x[ξ]− u∥2η

]
− ∥x− u∥2η = ∥x̂− u∥2pη − ∥x− u∥2pη

where ξ ∈ {1, . . . , b} is a random variable with distribution p =
(p1, . . . , pb).

Hence, if η = bL and pi = 1/b for every i = 1, . . . , b, then

∥x− u∥2L − ∥x̂− u∥2L = ∥x− u∥2η − E
[
∥x[ξ]− u∥2η

]

Lemma 5.23 Assume that let η = bL. Then, for all u ∈ Rn,

A+E [ϕ(y[ξ])− ϕ(u)] +
1

2b
E
[
∥x[ξ]− u∥2η

]
≤ A[ϕ(y)− ϕ(u)] +

1

2b
∥x− u∥2η
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Feasibility of {yk}: Recall that we have assumed that

y[i] ∈ domh ∀i ∈ {1, . . . , b}

Question: How to show this fact? Have

y[i] =
A

A+
y +

a

A+
xb[i]

=
A

A+
y +

a

A+
[x+ b(x[i]− x)]

So
A+y+ − Ay = a[bx+ − (b− 1)x]

or
Ak+1y

k+1 − Aky
k = ak[bx

k+1 − (b− 1)xk]

Summing the above identity from k = 0 to k = k − 1, we have

Aky
k − A0y

0 =
k−1∑
l=0

{
al
[
bxl+1 − (b− 1)xl

]}
= a0[bx

1 − (b− 1)x0] +
k−1∑
l=1

{
al
[
bxl+1 − (b− 1)xl

]}
= a0[bx

1 − (b− 1)a0x
0] +

k−1∑
l=1

{
(balx

l+1 − bal−1x
l) +

[
bal−1x

l − (b− 1)alx
l
]}

= a0[bx
1 − (b− 1)x0] + b(ak−1x

k − a0x
1) +

k−1∑
l=1

[bal−1 − (b− 1)al]x
l

= bak−1x
k − (b− 1)a0x

0 +
k−1∑
l=1

[bal−1 − (b− 1)al]x
l

Take

A0 =
b− 1

b

This implies that

a0 =
1

b

Since x0 = y0, the above identity simplifies to

Aky
k = bak−1x

k +
k−1∑
l=1

[bal−1 − (b− 1)al]x
l
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Aky
k = bak−1x

k +
k−1∑
l=1

[bal−1 − (b− 1)al]x
l

We will show below that

bal−1 − (b− 1)al ≥ 0 ∀l ≥ 1 (∗)

Thus the above relation shows that yk is a convex combination of
the points x1, . . . , xk ∈ domh. Hence, it follows that yk ∈ domh

Proof of (∗): For simplicity, drop subscript l. Want to show that

ba− − (b− 1)a ≥ 0

Have

ba− =
A

ba−
a =

A+

b2a

So

ba− − (b− 1)a =
A

ba−
− (b− 1)

A+

b2a

≥ 1

a

(
A

b
− (b− 1)

A+

b2

)
≥ 1

ab2
[
bA− (b− 1)A+

]
=

1

ab2
[bA− (b− 1)(A+ a)]

=
1

ab2
[A− (b− 1)a]

=
1

ab2
[
A+ − ba

]
=

1

b2

[
A+

a
− b

]
=

1

b2
[
b2a− b

]
≥ 0

where the last inequality is due to the fact that

a ≥ a0 =
1

b2
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