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Mirror Descent Method (MDM) is similar to SM
except that it is based on a Bregman distance instead
of the Euclidean one.

It is assumed below that (-,-) is an arbitrary inner
product in R" and that || - || is an arbitrary norm in
R™, i.e., it is not necessarily the one associated with
the inner product (-, -).

The dual norm || - ||, associated with || - || is then
defined as

Ipll« = max{(p,z) : |lz|| <1} VpeR"
It can be easily seen that

(o, z) <|lpllllzl VYo,p e R



1 Bregman distances

Definition 1.1 w € Conv (R") is called a distance
generating function if

(1) int (domw) = {x € R" : dw(z) # 0};

(i1) w is continuously differentiable on int (domw).

Define
WY :=int (domw), W = domw

Function w as in Definition 1.1 induces the Bregman
distance dw : R" x W — R defined for every (2, x) €
R" x W9 as

(dw)(z';2) == w(x') — L,(2"; x)

= w(z') — [w(z) + (Vw(z), 2’ — z)]

Remark: For every (2/,2) € R" x W9, have
(dw)(z';2) >0

For simplicity, for every x € WY, the function (dw)(-; x)
will be denoted by (dw), so that

(dw).(z") = (dw)(2';2) Va' € R",

Remark: It is well known that for any w € Conv(R"),
we have

) # ri(domw) C {x € R": dw(x) # 0}
This fact and Definition 1.1(i) imply that W° # 0.

Exercise: Show that conditions (i) and (ii) of Def-
inition 1.1 are equivalent to the condition that w is
differentiable over the set {x € R" : Qw(x) # 0}
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Lemma 1.2 For every x,2’ € W° and v € domw, we have:

V(dw).(z') = =V(dw) . (z) = Vw(z') — Vw(z)

(dw)p(u) — (dw)g(u) = (Vw(z) — Vw(z"),u — ) + (dw)(x)

Proof: Exercise.

Definition 1.3 Let v > 0 and conver set X # () be given. A
distance generating function w is called a v-distance generat-
ing function for X if

i) riX CW° and X C W;

it) w is v-strongly convex on X ;

Remark: For every (2/,z) € R" x W°, have

(dw)('sz) = Z[la’ —



Here are some classical and useful examples of distance gen-
erating functions.

Example 1: If || - || is the inner product norm, then w(-) =
| - ||?/2 is a 1-distance generating function for any convex set X

and 1
dw, (") = 5”:6/ —z||* Vz,2’ € R"

Example 2: If || - || = || - || where
lzlli =) leil Ve eR",
i=1

then function w : R} — R defined as

w(z) = Z x; log x;
i=1

is a 1-distance generating function for
A, ={z eR" : (e,z) =1}

where e := (1,...,1)7.

For every x,y € A,, such that z > 0, have

n

dw,(y) =Y [yilogy; — xilogx; — (1 +log ) (yi — ;)]

i=1

= Z lyilogy; — w;logzi + (v — @) — (vi — i) log @]
i=1

- Yi Yi
= Z |:yi log (93_) + (yi — Iz):| = Zyi log -
i=1 ' ]



Proposition 1.4 Assume that ¢ € Conv (R") and w is a v-
distance generating function for domt). Then,

inf{(¢) + w)(x) : z € R"} (1)
has a unique optimal solution x. Moreover, it holds that

z € domy N WY

Proof: Since 1, w € Conv(R") and domy N domw # {, it
follows that 1) +w € Conv (R"). Moreover, since w is v-strongly
convex, it follows that ¢ + w is also v-strongly convex. Hence,
(1) has a unique optimal solution z. Clearly, z € domt. The
optimality condition for (1) implies that

0€ 0 +w)(z) =0Y(x) + dw(x)
where the last equality is due to the fact that
ri (dom ) Nri (domw) = 1i (dom ) N W = ri (dom v)) # ()

The above conclusion implies that Ow(Z) # @), and hence that
T € W due to Definition 1.1(i).



2 Problem, assumptions and algorithm

Consider the optimization problem
¢ = min{@(z) := (f + h)(z) : v € R"} (2)
where the following assumptions hold:
e h € Conv (R")
e f € Conv (R") is such that dom f D dom h

e there exists a function s : domh — R" satisfying the fol-
lowing properties:

— s(xz) € Of(x) for all z € domh
— there exists M > 0 such that for every x € dom h,

Is(@)[l. < M (3)

e optimal solution set X, is nonempty, and hence ¢, € R

The second assumption above implies that

(") — f(2)| < M||z" —z|| Vz,2" € dom h.



Assume that w is a v-distance generating function for dom h.
Observe that the definition of such function implies that

ri (domh) C WY, domh C domw

where W9 := int (dom w).

Mirror Descent Method (MDM)

0) Let 2o € WP Ndomh be given
1) For k=1,2,...,do

— set sp_1 = s(xp_1)

— choose A, > 0 and let x; be the optimal solution of

min {Ef(u; Tp—1) + h(u) + )\ikdka_l(u)} (4)
where

Ci(3 k1) = f(op—1) + (Sk—1," — Tp—1)

Remark: The objective function of (4) is well-defined as long
as T5_1 € W2 N dom h.

Proposition 2.1 Ifz;,_; € WNdomh then z, € W°Ndom h.
Thus, MDM is well-defined.

Proof: Follows from Proposition 1.4 with
V() = Mellp (5 o1) + ()] = luw(5781)
and the facts that dom = dom A and

rr = argmin {¢) + w)(z) : € R"}



Lemma 2.2 For every k > 1,

Vw(zg_1) — Vw(zy)
Ak

€ Sp_1 + 8h($k)

Proof: The optimality condition for (4) implies that
1
0€od (ﬁf('; fEk_l) + h() + )\—kd’ka_l(')) (ka)

= st = 3Tt 40 (KO + 00 ()

Ak Ak
1
= Sgp—1 — )\—[Vw(xk_l) — Vw(xy)] + Oh(zy)
k

where the last equality is due to the fact that

ri (domw) N i (dom k) = W° N i (dom h) = ri (dom h) #



Lemma 2.3 For every k > 1 and u € dom w,

dwy,_, () = dws, (u) > dwe,_, (2x) = MM ||z — 21
+ A (Sk—1, Tp—1 — u) + h(xg) — h(u)

Proof: To simplify notation, let zg = x_1, 2 = x4, s?f = Sk_1,
and A = \;. By Lemma 2.2, have

o = Vw(zg) — Vw(z)
' A

— s?c € 0h(z)

(Lemma 1.2) = dw,,(2) + (Vw(z) — Vw(z),u — z)
= dw,,(2) + (Vw(z) — Vw(z), z — u)
(def of sp) = dw.,(2) + (A(s} + sn),2 — )
+(



Lemma 2.4 For every k > 1 and u € dom w,
QAN VM? + dw,, , (u) — dwy, (u) > M ]o(ar) — ¢(u)]
Proof: For every k£ > 1 and u € domw, have

dwg, (1) — dwg, (u) = dw;,(u) — dw.(u)
[dwzo(z) AM ||z — zo||]] + (As(},zo—m
+ Ah(2) = h(u)]
o

> [dwzo(2) = AM||z = zo[|] + A[f (20) — f(w)]
+ A[(z) = h(u)]

[dwzo(Z) — AM ||z = Zo|[] + Alf (20) = f(2)]
A +h)(z) = (f + ) (w)]

[deO(z)—AMIIZ—Zoll] AM ||z = zol|

+Al¢(2) — ¢(u)]
> [dwzo(2) = 2AM ||z — 20| + A[@(2) — o (u)]

vl|z = zol*

— 2AM ||z = ||| + Alp(2) — o(u)]

> 22X M? + Ao(2) — d(u)]

Lemma 2.5 For every K > 1, u € domw, and point Ty such

that .
Zkzl )\kqb(xk:)

P(Tx) < A

2M?v Zszl )‘i + [dwwo (u) — AWy, (u>]
Ak

Proof: It follows from Lemma 2.4 that

P(Tx) — d(u) <

Z Me[o() — p(u)] < 2M21/Z A2 4 [dwg, (u) — dw,, (u)]

k=1

This together with the assumption on zx and the definition of
Ak imply the result.
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Proposition 2.6 For every K > 1,

oMy S A2+ dw,, (T,
QS(EK) —¢* S Zkz_lA[l; 0( )

K
dw,, (z.) < dwg,(z,) + 2M21/Z A

k=1

Proof: Follows from Lemma 2.5 with ©v = z,.

Proposition 2.7 (Constant stepsize) Assume that

5
=\= >
A=A YOSVE Vi >1
Then, for any
K VM2D0
8?2
where Dy := inf{dw,,(z.) : z. € X.}, we have
925(‘7_'7() — ¢ <¢

Proof: For any K satisfying (5), have

M2 AN+ Dy 2M2vK N + Dy

Tr) — &, < _
e, WDy _
2 Ke —°

Hence, the e-iteration-complexity of MDM is

I/M2D0
o)
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3 Application

Consider the optimization problem (2) where h(-) is the indica-
tor of

X=A,={zeR}:(ex)=1}
where e = (1,...,1)7. Take zy = ¢/n.

Euclidean setting: Choose

1 1 2 1
() = gl = aol? = 3llo = (/)P = 5 (el = 2eva) + el?)
1 2 1 1 1 1 1 1
(-2 ) = e - D) <L (- 1) <
2 non 2 n 2 n 2

The Euclidean version of MDM has e-iteration-complexity equal

to e
2
°(%)
where
My = sup{ls(@)ll2 : = € A}
and || - ||2 is usual Euclidean norm.
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Non-Euclidean setting: Choose

1 n n
w(z) =5y wiloga, |zl = llaf = |
i=1 i=1

Then
M=o v=

For every x,y € A,, such that z > 0, have
dw,(y) =Y yilog L
i=1 L

Hence, for any u € A,,, have

dwy, (u) = Z u; log(nu;) = logn + Zuz logu; < logn
i=1

=1

Recall that w is 1-strongly convex on A, with respect to || - |

MDM has e-iteration-complexity equal to
M2 1
(1)
€

where
My = sup{||s(z)||c : . € Ay}
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Comparison: The ratio between the two complexities is
Mo\ 2
R:=[=—2]) logn
( M, ) g

which satisfies
logn

< R <logn
n

In practice, R is closer to the lower bound than it is to up-
per bound, which generally favors the non-Euclidean version of
MDM.

Remark: The solution of the prox subproblem (4) in the non-
Euclidean version of MDM has a closed form, namely,

o (2p—1)s exp[—Ae(Sk—1)i]
(xk)z Zn

T et )s D)

while in the Euclidean setting a (usually inexpensive) line search
needs to be performed to compute xy.
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