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Mirror Descent Method (MDM) is similar to SM
except that it is based on a Bregman distance instead
of the Euclidean one.

It is assumed below that ⟨·, ·⟩ is an arbitrary inner
product in Rn and that ∥ · ∥ is an arbitrary norm in
Rn, i.e., it is not necessarily the one associated with
the inner product ⟨·, ·⟩.

The dual norm ∥ · ∥∗ associated with ∥ · ∥ is then
defined as

∥p∥∗ = max{⟨p, x⟩ : ∥x∥ ≤ 1} ∀p ∈ Rn.

It can be easily seen that

⟨p, x⟩ ≤ ∥p∥∗∥x∥ ∀x, p ∈ Rn.
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1 Bregman distances

Definition 1.1 w ∈ Conv (Rn) is called a distance
generating function if

(i) int (domw) = {x ∈ Rn : ∂w(x) ̸= ∅};

(ii) w is continuously differentiable on int (domw).

Define

W 0 := int (domw), W = domw

Function w as in Definition 1.1 induces the Bregman
distance dw : Rn×W 0 → R defined for every (x′, x) ∈
Rn ×W 0 as

(dw)(x′;x) := w(x′)− ℓw(x
′;x)

= w(x′)− [w(x) + ⟨∇w(x), x′ − x⟩]

Remark: For every (x′, x) ∈ Rn ×W 0, have

(dw)(x′;x) ≥ 0

For simplicity, for every x ∈ W 0, the function (dw)(·;x)
will be denoted by (dw)x so that

(dw)x(x
′) = (dw)(x′;x) ∀x′ ∈ Rn.

Remark: It is well known that for any w ∈ Conv(Rn),
we have

∅ ≠ ri (domw) ⊂ {x ∈ Rn : ∂w(x) ̸= ∅}

This fact and Definition 1.1(i) imply that W 0 ̸= ∅.

Exercise: Show that conditions (i) and (ii) of Def-
inition 1.1 are equivalent to the condition that w is
differentiable over the set {x ∈ Rn : ∂w(x) ̸= ∅}
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Lemma 1.2 For every x, x′ ∈ W 0 and u ∈ domw, we have:

∇(dw)x(x
′) = −∇(dw)x′(x) = ∇w(x′)−∇w(x)

(dw)x′(u)− (dw)x(u) = ⟨∇w(x)−∇w(x′), u− x⟩+ (dw)x′(x)

Proof: Exercise.

Definition 1.3 Let ν > 0 and convex set X ̸= ∅ be given. A
distance generating function w is called a ν-distance generat-
ing function for X if

i) riX ⊂ W 0 and X ⊂ W ;

ii) w is ν-strongly convex on X;

Remark: For every (x′, x) ∈ Rn ×W 0, have

(dw)(x′;x) ≥ ν

2
∥x′ − x∥2
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Here are some classical and useful examples of distance gen-
erating functions.

Example 1: If ∥ · ∥ is the inner product norm, then w(·) =
∥ · ∥2/2 is a 1-distance generating function for any convex set X
and

dwx(x
′) =

1

2
∥x′ − x∥2 ∀x, x′ ∈ Rn

Example 2: If ∥ · ∥ = ∥ · ∥1 where

∥x∥1 =
n∑

i=1

|xi| ∀x ∈ Rn,

then function w : Rn
+ → R defined as

w(x) =
n∑

i=1

xi log xi

is a 1-distance generating function for

∆n := {x ∈ Rn
+ : ⟨e, x⟩ = 1}

where e := (1, . . . , 1)T .

For every x, y ∈ ∆n such that x > 0, have

dwx(y) =
n∑

i=1

[yi log yi − xi log xi − (1 + log xi)(yi − xi)]

=
n∑

i=1

[yi log yi − xi log xi + (yi − xi)− (yi − xi) log xi]

=
n∑

i=1

[
yi log

(
yi
xi

)
+ (yi − xi)

]
=

n∑
i=1

yi log
yi
xi
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Proposition 1.4 Assume that ψ ∈ Conv (Rn) and w is a ν-
distance generating function for domψ. Then,

inf{(ψ + w)(x) : x ∈ Rn} (1)

has a unique optimal solution x̄. Moreover, it holds that

x̄ ∈ domψ ∩W 0

Proof: Since ψ,w ∈ Conv (Rn) and domψ ∩ domw ̸= ∅, it
follows that ψ+w ∈ Conv (Rn). Moreover, since w is ν-strongly
convex, it follows that ψ + w is also ν-strongly convex. Hence,
(1) has a unique optimal solution x̄. Clearly, x̄ ∈ domψ. The
optimality condition for (1) implies that

0 ∈ ∂(ψ + w)(x̄) = ∂ψ(x̄) + ∂w(x̄)

where the last equality is due to the fact that

ri (domψ) ∩ ri (domw) = ri (domψ) ∩W 0 = ri (domψ) ̸= ∅

The above conclusion implies that ∂w(x̄) ̸= ∅, and hence that
x̄ ∈ W 0 due to Definition 1.1(i).
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2 Problem, assumptions and algorithm

Consider the optimization problem

ϕ∗ = min{ϕ(x) := (f + h)(x) : x ∈ Rn} (2)

where the following assumptions hold:

• h ∈ Conv (Rn)

• f ∈ Conv (Rn) is such that dom f ⊃ domh

• there exists a function s : domh → Rn satisfying the fol-
lowing properties:

– s(x) ∈ ∂f(x) for all x ∈ domh

– there exists M ≥ 0 such that for every x ∈ domh,

∥s(x)∥∗ ≤M (3)

• optimal solution set X∗ is nonempty, and hence ϕ∗ ∈ R

The second assumption above implies that

|f(x′)− f(x)| ≤M∥x′ − x∥ ∀x, x′ ∈ domh.
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Assume that w is a ν-distance generating function for domh.
Observe that the definition of such function implies that

ri (domh) ⊂ W 0, domh ⊂ domw

where W 0 := int (domw).

Mirror Descent Method (MDM)

0) Let x0 ∈ W 0 ∩ domh be given

1) For k = 1, 2, . . ., do

– set sk−1 = s(xk−1)

– choose λk > 0 and let xk be the optimal solution of

min

{
ℓf (u;xk−1) + h(u) +

1

λk
dwxk−1

(u)

}
(4)

where

ℓf (·;xk−1) = f(xk−1) + ⟨sk−1, · − xk−1⟩

Remark: The objective function of (4) is well-defined as long
as xk−1 ∈ W 0 ∩ domh.

Proposition 2.1 If xk−1 ∈ W 0 ∩ domh then xk ∈ W 0 ∩ domh.
Thus, MDM is well-defined.

Proof: Follows from Proposition 1.4 with

ψ(·) = λk[ℓf (·;xk−1) + h(·)]− ℓw(·;xk−1)

and the facts that domψ = domh and

xk = argmin {ψ + w)(x) : x ∈ Rn}
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Lemma 2.2 For every k ≥ 1,

∇w(xk−1)−∇w(xk)
λk

∈ sk−1 + ∂h(xk)

Proof: The optimality condition for (4) implies that

0 ∈ ∂

(
ℓf (·;xk−1) + h(·) + 1

λk
dwxk−1

(·)
)
(xk)

= sk−1 −
1

λk
∇w(xk−1) + ∂

(
h(·) + 1

λk
w(·)

)
(xk)

= sk−1 −
1

λk
[∇w(xk−1)−∇w(xk)] + ∂h(xk)

where the last equality is due to the fact that

ri (domw) ∩ ri (domh) = W 0 ∩ ri (domh) = ri (domh) ̸= ∅
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Lemma 2.3 For every k ≥ 1 and u ∈ domw,

dwxk−1
(u)− dwxk

(u) ≥ dwxk−1
(xk)− λkM∥xk − xk−1∥

+ λk⟨sk−1, xk−1 − u⟩+ h(xk)− h(u)

Proof: To simplify notation, let z0 = xk−1, z = xk, s
0
f = sk−1,

and λ = λk. By Lemma 2.2, have

sh :=
∇w(z0)−∇w(z)

λ
− s0f ∈ ∂h(z)

Have

dwxk−1
(u)− dwxk

(u)

= dwz0(u)− dwz(u)

(Lemma 1.2) = dwz0(z) + ⟨∇w(z)−∇w(z0), u− z⟩
= dwz0(z) + ⟨∇w(z0)−∇w(z), z − u⟩

(def of sh) = dwz0(z) + ⟨λ(s0f + sh), z − u⟩
= dwz0(z) + ⟨λs0f , z − u⟩+ ⟨λsh, z − u⟩
=

[
dwz0(z) + ⟨λs0f , z − z0⟩

]
+ ⟨λs0f , z0 − u⟩+ ⟨λsh, z − u⟩

=
[
dwz0(z) + ⟨λs0f , z − z0⟩

]
+ ⟨λs0f , z0 − u⟩+ λ[h(z)− h(u)]

≥
[
dwz0(z)− λ∥s0f∥∗ ∥z − z0∥

]
+ ⟨λs0f , z0 − u⟩+ λ[h(z)− h(u)]

≥ [dwz0(z)− λM∥z − z0∥] + ⟨λs0f , z0 − u⟩+ λ[h(z)− h(u)]
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Lemma 2.4 For every k ≥ 1 and u ∈ domw,

2λ2kνM
2 + dwxk−1

(u)− dwxk
(u) ≥ λk[ϕ(xk)− ϕ(u)]

Proof: For every k ≥ 1 and u ∈ domw, have

dwxk−1
(u)− dwxk

(u) = dwz0(u)− dwz(u)

≥ [dwz0(z)− λM∥z − z0∥] + ⟨λs0f , z0 − u⟩
+ λ[h(z)− h(u)]

≥ [dwz0(z)− λM∥z − z0∥] + λ[f(z0)− f(u)]

+ λ[h(z)− h(u)]

= [dwz0(z)− λM∥z − z0∥] + λ[f(z0)− f(z)]

+ λ[(f + h)(z)− (f + h)(u)]

≥ [dwz0(z)− λM∥z − z0∥]− λM∥z − z0∥
+ λ[ϕ(z)− ϕ(u)]

≥ [dwz0(z)− 2λM∥z − z0∥] + λ[ϕ(z)− ϕ(u)]

≥
[
ν∥z − z0∥2

2
− 2λM∥z − z0∥

]
+ λ[ϕ(z)− ϕ(u)]

≥ −2λ2νM2 + λ[ϕ(z)− ϕ(u)]

Lemma 2.5 For every K ≥ 1, u ∈ domw, and point x̄K such
that

ϕ(x̄K) ≤
∑K

k=1 λkϕ(xk)

ΛK

,

we have

ϕ(x̄K)− ϕ(u) ≤ 2M2ν
∑K

k=1 λ
2
k + [dwx0(u)− dwxK

(u)]

ΛK

Proof: It follows from Lemma 2.4 that

K∑
k=1

λk[ϕ(xk)− ϕ(u)] ≤ 2M2ν
K∑
k=1

λ2k + [dwx0(u)− dwxK
(u)]

This together with the assumption on x̄K and the definition of
ΛK imply the result.
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Proposition 2.6 For every K ≥ 1,

ϕ(x̄K)− ϕ∗ ≤
2M2ν

∑K
k=1 λ

2
k + dwx0(x∗)

ΛK

dwxK
(x∗) ≤ dwx0(x∗) + 2M2ν

K∑
k=1

λ2k

Proof: Follows from Lemma 2.5 with u = x∗.

Proposition 2.7 (Constant stepsize) Assume that

λk = λ =
ε

4νM2
∀k ≥ 1

Then, for any

K ≥ νM2D0

8ε2
(5)

where D0 := inf{dwx0(x∗) : x∗ ∈ X∗}, we have

ϕ(x̄K)− ϕ∗ ≤ ε

Proof: For any K satisfying (5), have

ϕ(x̄K)− ϕ∗ ≤
2M2ν

∑K
k=1 λ

2
k +D0

ΛK

=
2M2νKλ2 +D0

Kλ
= 2M2νλ+

D0

Kλ

=
ε

2
+

4νM2D0

Kε
≤ ε

Hence, the ε-iteration-complexity of MDM is

O
(
νM2D0

ε2

)
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3 Application

Consider the optimization problem (2) where h(·) is the indica-
tor of

X = ∆n := {x ∈ Rn
+ : ⟨e, x⟩ = 1}

where e = (1, . . . , 1)T . Take x0 = e/n.

Euclidean setting: Choose

w(x) =
1

2
⟨x, x⟩, ∥ · ∥ :=

√
⟨·, ·⟩.

Then
∥ · ∥∗ = ∥ · ∥, ν = 1

For any x ∈ ∆n, have

dwx0(x) =
1

2
∥x− x0∥2 =

1

2
∥x− (e/n)∥2 = 1

2

(
∥x∥2 − 2

n
⟨e, x⟩+ 1

n2
∥e∥2

)
=

1

2

(
∥x∥2 − 2

n
+

1

n

)
=

1

2

(
∥x∥2 − 1

n

)
≤ 1

2

(
1− 1

n

)
≤ 1

2

The Euclidean version of MDM has ε-iteration-complexity equal
to

O
(
M2

2

ε2

)
where

M2 = sup{∥s(x)∥2 : x ∈ ∆n}
and ∥ · ∥2 is usual Euclidean norm.
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Non-Euclidean setting: Choose

w(x) =
1

2

n∑
i=1

xi log xi, ∥x∥ := ∥x∥1 :=
n∑

i=1

|xi|

Then
∥ · ∥∗ = ∥ · ∥∞, ν = 1

For every x, y ∈ ∆n such that x > 0, have

dwx(y) =
n∑

i=1

yi log
yi
xi

Hence, for any u ∈ ∆n, have

dwx0(u) =
n∑

i=1

ui log(nui) = log n+
∑
i=1

ui log ui ≤ log n

Recall that w is 1-strongly convex on ∆n with respect to ∥ · ∥1

MDM has ε-iteration-complexity equal to

O
(
M2

∞ log n

ε2

)
where

M∞ = sup{∥s(x)∥∞ : x ∈ ∆n}
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Comparison: The ratio between the two complexities is

R :=

(
M∞

M2

)2

log n

which satisfies
log n

n
≤ R ≤ log n

In practice, R is closer to the lower bound than it is to up-
per bound, which generally favors the non-Euclidean version of
MDM.

Remark: The solution of the prox subproblem (4) in the non-
Euclidean version of MDM has a closed form, namely,

(xk)i =
(xk−1)i exp[−λk(sk−1)i]∑n
i=1(xk−1)i exp[−λk(sk−1)i]

> 0

while in the Euclidean setting a (usually inexpensive) line search
needs to be performed to compute xk.
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