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Def: f : Rn → [−∞,∞] is differentiable at x̄ ∈ Rn if f (x̄) ∈ R

and there exists a linear map f ′(x̄) : Rn → R such that

lim
h→0

f (x̄ + h)− f (x̄)− f ′(x̄)h
∥h∥ = 0 (1)

Facts: If f is differentiable at x̄ , then
1) f ′(x̄) satisfying (??) is unique
2) x̄ ∈ int (dom f ) where

dom f := {x ∈ Rn : f (x) < ∞}



Def: Given function f : Rn → R̄, define the epigraph and strict
epigraph, respectively, as

epi f := {(x , t) ∈ Rn × R : f (x) ≤ t}
epis f := {(x , t) ∈ Rn × R : f (x) < t}

Def: f : Rn → R̄ is said to be convex if its epigraph epi f is a
convex set. The set of all such functions is denoted by
E-Conv(Rn)



Proposition

The following conditions about f : Rn → R̄ are equivalent:
a) epi f is a convex set (i.e., f ∈ E-Conv(Rn))
b) epis f is a convex set
c) for every x0, x1 ∈ dom f and α ∈ (0, 1), we have

f (αx0 + (1 − α)x1) ≤ αf (x0) + (1 − α)f (x1)



Notation: Let

∆k :=

{
(α0, . . . , αk) ∈ Rk+1 :

k

∑
i=0

αi = 1, αi ≥ 0
}
,

Proposition
Let f : Rn → R̄ be given. Then, f ∈ E-Conv(Rn) iff

f (α0x0 + . . . + αkxk) ≤ α0f (x0) + . . . + αk f (xk),

for every x0, . . . , xk ∈ dom f and (α0, . . . , αk) ∈ ∆k

In particular, for every x0, . . . , xk ∈ dom f and
x ∈ co {x0, . . . , xk}, there holds

f (x) ≤ max{f (xi ) : i = 0, . . . , k}



Def: f : Rn → R̄ is proper if dom f ̸= ∅ and f (x) > −∞ for all
x ∈ Rn. The set of all proper convex functions is denoted by
Conv(Rn)

Def: f ∈ Conv(Rn) is closed if its epigraph is closed. The set of
all proper closed convex functions is denoted by Conv (Rn)



Definition
The indicator function δC : Rn → [0,∞] of a set C ⊂ Rn is

δC (x) :=
{

0 if x ∈ C
+∞ otherwise

Obs: δC is convex (resp., proper convex) ⇔ C is convex (resp.,
nonempty convex)

Definition
The support function σC : Rn → [−∞,∞] of C is

σC (x) := sup{⟨x , c⟩ : c ∈ C}

If C = ∅ then σC = −∞; otherwise, σC ∈ Conv (Rn)



Definition

f : Rn → R̄ is strictly convex if it is proper and, for every
x0 ̸= x1 ∈ dom f and α ∈ (0, 1),

f (αx0 + (1 − α)x1) < αf (x0) + (1 − α)f (x1)



Def: For µ ≥ 0, define

Convµ(R
n) = {f : Rn → (∞,∞] : f − µ∥ · ∥2/2 ∈ Conv(Rn)}

Convµ (R
n) = {f : Rn → (∞,∞] : f − µ∥ · ∥2/2 ∈ Conv (Rn)}

Clearly,

Conv0(R
n) = Conv(Rn) Conv0 (R

n) = Conv (Rn)

Def: Function f ∈ Convµ(Rn) is called a µ-strongly convex
function if µ > 0, or simply, a µ-convex function if µ ≥ 0



Def: Let f : Rn → (−∞,∞] and nonempty convex set
C ⊂ dom f be given. f is said to be strictly convex on C if
f + δC is strictly convex

Proposition
If f : Rn → (−∞,∞] is strictly convex on a nonempty convex set
C, then

min{f (x) : x ∈ C}

has at most one global minimum

Obs: Previous result does not guarantee the existence of a global
minimum but simply that there exists at most one (if any).



Def: For nonempty convex set C and µ ≥ 0, define

Conv(C) := {f : C ⊂ dom f , f + δC ∈ Conv(Rn)}
Conv (C) := {f : C ⊂ dom f , f + δC ∈ Conv (Rn)}

Convµ(C) := {f : C ⊂ dom f , f + δC ∈ Convµ(R
n)}

Convµ (C) := {f : C ⊂ dom f , f + δC ∈ Convµ (R
n)}

Conv(C) (resp., Conv (C)) is the set of convex (resp., closed
convex) functions on C .



Proposition
Let µ > 0 and C ̸= ∅ be a convex set. If f ∈ Convµ (C), then
the problem

f∗ := inf{f (x) : x ∈ C}

has a unique optimal solution x∗ and

f (x) ≥ f∗ +
µ

2 ∥x − x∗∥2 ∀x ∈ C .



Proposition
Assume that f is differentiable on a convex set ∅ ̸= C ⊂ Rn.
Then, the following are equivalent:
(a) f is convex on C, or equivalently, for every x , x ′ ∈ C and

t ∈ (0, 1),

f ((1 − t)x + tx ′) ≤ (1 − t)f (x) + tf (x ′)

(b) for every x ′, x ∈ C,

f (x ′) ≥ f (x) + ⟨∇f (x), x ′ − x⟩

(c) for every x ′, x ∈ C,

⟨∇f (x ′)−∇f (x), x ′ − x⟩ ≥ 0



Proposition
Assume that f is differentiable on a convex set ∅ ̸= C ⊂ Rn.
Then, the following are equivalent:
(a) f is striclty convex on C, or equivalently, for every x , x ′ ∈ C

such that x ̸= x ′ and t ∈ (0, 1),

f ((1 − t)x + tx ′) < (1 − t)f (x) + tf (x ′)

(b) for every x ′, x ∈ C such that x ′ ̸= x,

f (x ′) > f (x) + ⟨∇f (x), x ′ − x⟩;

(c) for every x ′, x ∈ C such that x ′ ̸= x,

⟨∇f (x ′)−∇f (x), x ′ − x⟩ > 0



Proposition
Assume that f is differentiable on a convex set ∅ ̸= C ⊂ Rn.
Then, for any constant β ∈ R, the following are equivalent:
(a) f − β∥ · ∥2/2 is convex on C
(b) for every x ′, x ∈ C,

f (x ′) ≥ f (x) + ⟨∇f (x), x ′ − x⟩+ β

2 ∥x ′ − x∥2 (∗)

(c) for every x ′, x ∈ C,

⟨∇f (x ′)−∇f (x), x ′ − x⟩ ≥ β∥x ′ − x∥2

Letting ℓf (x ′; x) := f (x) + ⟨∇f (x), x ′ − x⟩, then (∗) becomes

f (x ′) ≥ ℓf (x ′; x) + β

2 ∥x ′ − x∥2



Def: For m > 0, f is m-weakly convex on C if f + m∥ · ∥2/2 is
convex on C . In such case, we say that m is a lower curvature of
f on C

Corollary
Assume that f is differentiable on a convex set ∅ ̸= C ⊂ Rn and
let m > 0 be given. Then, the following are equivalent:

f is m-weakly convex on C
for all x , x ′ ∈ C,

f (x ′) ≥ ℓf (x ′; x)− m
2 ∥x ′ − x∥2

for all x , x ′ ∈ C,

⟨∇f (x ′)−∇f (x), x ′ − x⟩ ≥ −m∥x ′ − x∥2

Proof: Follows from previous prop with β = −m



Definition
M ∈ R is an upper curvature of f on C if

M
2 ∥ · ∥2 − f (·)

is convex on C

Clearly, M ∈ R is an upper curvature of f on C iff

f (x ′) ≤ f (x) + ⟨∇f (x), x ′ − x⟩+ M
2 ∥x ′ − x∥2 ∀x , x ′ ∈ C

or equivalently,

⟨∇f (x ′)−∇f (x), x ′ − x⟩ ≤ M∥x ′ − x∥2 ∀x , x ′ ∈ C



Definition
f : Rn → (−∞,∞] is L-smooth on a nonempty convex set
C ⊂ Rn if f is differentiable on C and ∇f is L-Lipschitz
continuous on C , i.e.,

∥∇f (x ′)−∇f (x)∥ ≤ L∥x ′ − x∥ x , x ′ ∈ C

Proposition
Assume that f is L-smooth on a convex set ∅ ̸= C ⊂ Rn. Then, L
is both a lower and an upper curvature of f on C, and hence f is
L-weakly convex on C



Assume f ∈ Conv(Rn) and x̄ ∈ dom f

Def: s ∈ Rn is called a subgradient of f at x̄ if

f (x) ≥ f (x̄) + ⟨ s, x − x̄ ⟩ ∀x ∈ Rn

The set of all subgradients of f at x̄ is denoted by ∂f (x̄) and the
point-to-set map ∂f (·) is called the subdifferential of f

Proposition
The following statements hold:

a) x̄ is a global minimizer of

inf{f (x) : x ∈ Rn}

if and only if 0 ∈ ∂f (x̄)
b) for every x ∈ dom f , the set ∂f (x) is (possibly, empty) closed

convex



Assume that f : Rn → (−∞,∞] and x̄ ∈ dom f

Definition
The directional derivative of f at x̄ along d ∈ Rn is

f ′(x̄ ; d) := lim
t↓0

f (x̄ + td)− f (x̄)
t

whenever the above limit exists (possibly, equal to ±∞).

Proposition
If f is diffferentiable at x̄ then, for every d ∈ Rn, f ′(x̄ ; d) exists
and

f ′(x̄ ; d) = f ′(x̄)d = ⟨∇f (x̄), d⟩



Proposition
Let f ∈ Conv(Rn), x̄ ∈ dom f and d ∈ Rn be given. Then:

a) the function

t > 0 7→ f (x̄ + td)− f (x̄)
t

is non-decreasing
b) for every d ∈ Rn, f ′(x̄ ; d) is well-defined and

f ′(x̄ ; d) = inf
t>0

f (x̄ + td)− f (x̄)
t

c) f ′(x̄ ; ·) is convex



Relationship of subgradient and directional derivative

Proposition
Assume that f ∈ Conv(Rn) and x̄ ∈ dom f . Then,

∂f (x̄) = {s ∈ Rn : ⟨ s, · ⟩ ≤ f ′(x̄ ; ·)}

and
cl [f ′(x̄ ; ·)] = sup{⟨s, ·⟩ : s ∈ ∂f (x̄)}



Proposition
Assume that f ∈ Conv(Rn) and x̄ ∈ dom f . Then:

a) ∂f (x̄) = ∅ if and only if there exists d0 ∈ Rn such that

f ′(x̄ ; d0) = −∞

b) if x̄ ∈ ri (dom f ), then ∂f (x̄) ̸= ∅ and

f ′(x̄ ; d) = sup{⟨ d , s ⟩ : s ∈ ∂f (x̄)}

c) x̄ ∈ int (dom f ) if and only if ∂f (x̄) is non-empty and
bounded, in which case

f ′(x̄ ; d) = max{⟨ d , s ⟩ : s ∈ ∂f (x̄)}



Subgradient versus differentiability

Proposition
Assume that f ∈ Conv(Rn) and x̄ ∈ dom f . Then ∂f (x̄) is a
singleton if and only if f is diferentiable at x̄ , in which case

∂f (x̄) = {∇f (x̄)}



Def: The conjugate of a function f : Rn → R̄ is

f ∗(s) := sup
x∈Rn

⟨ s, x ⟩ − f (x), ∀s ∈ Rn

Proposition
Let f : Rn → R̄ be given. Then, the following statements hold:

a) f = +∞ if and only if f ∗ = −∞
b) if f (x0) = −∞ for some x0 ∈ Rn, then f ∗ = +∞
c) if f ̸= ∞ and f is minorized by some affine function (e.g.,

f ∈ Conv(Rn)), then f ∗ ∈ Conv (Rn)



Proposition
Let f : Rn → R̄ be given. Then:

a) −f ∗(0) = inf{f (x) : x ∈ Rn}
b) for every s ∈ Rn,

f ∗(s) = − inf{f (x)− ⟨s, x⟩ : x ∈ Rn}
= inf{β ∈ R : f ≥ ⟨ s, · ⟩ − β}

and the infimum is achieved whenever f ∗(s) is finite
c) (Fenchel’s inequality) for any x , s ∈ Rn,

f ∗(s) ≥ ⟨ x , s ⟩ − f (x)



Proposition
Let f ∈ Conv(Rn) and x ∈ dom f be given. Then,

s ∈ ∂f (x) ⇐⇒ f ∗(s) ≤ ⟨ s, x ⟩ − f (x)

(or equivalently, f ∗(s) = ⟨ s, x ⟩ − f (x))



Proposition
For functions f , g : Rn → R̄, vectors x0, s0 ∈ Rn and scalar
α ∈ R, the following statements hold:

a) if g = f + α, then g∗ = f ∗ − α

b) if α > 0 and g = αf , then g∗(s) = αf ∗(s/α) for every
s ∈ Rn

c) if α ̸= 0 and g(x) = f (αx) for every x ∈ Rn, then
g∗(s) = f ∗(s/α) for every s ∈ Rn

d) if g(x) = f (x − x0) for every x ∈ Rn, then
g∗(s) = f ∗(s) + ⟨ s, x0 ⟩ for every s ∈ Rn

e) if g(x) = f (x) + ⟨ x , s0 ⟩ for every x ∈ Rn, then
g∗(s) = f ∗(s − s0) for every s ∈ Rn

f) if f ≤ g, then f ∗ ≥ g∗



Proposition
If f ∈ Conv (Rn) then

f ∗∗ = f

where f ∗∗ := (f ∗)∗

As a consequence, for every x ∈ Rn,

f (x) = sup
s

⟨s, x⟩ − f ∗(s)



Proposition
Assume that f ∈ Conv (Rn). Then,

s ∈ ∂f (x) ⇐⇒ x ∈ ∂f ∗(s)

As a consequence, ∂f ∗(0) is equal to the set of minimizers of

inf{f (x) : x ∈ Rn}



Proposition
Assume that f ∈ Conv (Rn). Then, the following are equivalent:

a) f is µ-convex
b) f ∗ is (1/µ)-smooth on Rn

Application: Assume that h ∈ Convµ (Rn) and D is a closed
convex set such that D ∩ dom h ̸= ∅. Define

g(x) = max
y∈D

⟨y ,Ax⟩ − h(y) ∀x ∈ Rn

Then, g is (∥A∥2/µ)-smooth



Let f ∈ Conv(Rn), x̄ ∈ dom f and ε ≥ 0 be given

Definition
s ∈ Rn is called an ε-subgradient of f at x̄ if

f (x) ≥ f (x̄) + ⟨ s, x − x̄ ⟩ − ε ∀x ∈ Rn.

The set of all ε-subgradients of f at x̄ is denoted by ∂εf (x̄) and
the point-to-set map ∂εf (·) is called the ε-subdifferential of f



Proposition
The following statements hold:

a) x̄ is an ε-minimizer of f∗ := inf{f (x) : x ∈ Rn}, i.e.,

f (x̄)− f∗ ≤ ε

or equivalently,

f (x̄) ≤ f (x) + ε ∀x ∈ Rn

if and only if 0 ∈ ∂εf (x̄)
b) ∂εf (x̄) is a (possibly, empty) closed convex set



Relationship of ε-subgradients and conjugate function

Proposition
Let f ∈ Conv(Rn), x ∈ dom f and s ∈ Rn be given. Then,

s ∈ ∂εf (x) ⇐⇒ f ∗(s) ≤ ⟨s, x⟩ − f (x) + ε



Transportation formula for subgradient

Proposition
Let f ∈ Conv(Rn), x ∈ dom f and s ∈ Rn be given and define

ε̄ := f ∗(s) + f (x)− ⟨s, x⟩

Then, the following statements hold:
(a) if ε̄ < ∞, then

ε̄ = min{ε : s ∈ ∂εf (x)}

(b) if s ∈ ∂f (x̄) for some x̄ ∈ dom f , then s ∈ ∂ε̄f (x) and

ε̄ = f (x)− f (x̄)− ⟨s, x − x̄⟩ < ∞



Proposition
If f ∈ Conv(Rn) and A : Rm → Rn is a linear map, then f ◦ A is
convex and

∂ε(f ◦ A)(x) ⊃ A∗∂εf (Ax) ∀x ∈ Rm

and equality holds whenever

A(Rm) ∩ ri (dom f ) ̸= ∅



Proposition
If fi ∈ Conv (Rn) for i = 1, . . . ,m, then f := f1 + . . . + fm is
convex and

∂f (x) ⊃ ∂f1(x) + . . . + ∂fm(x) ∀x ∈ Rn

and equality holds whenever

∩m
i=1 ri (dom fi ) ̸= ∅


