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Saddle point duality

Let X × Y ⊂ Rn × Rm and Ψ : X × Y → R be given and define
p : X → (−∞,∞] and d : Y → [−∞,∞) as

p(x) := sup{Ψ(x , y ′) : y ′ ∈ Y } ∀x ∈ X (1)
d(y) := inf{Ψ(x ′, y) : x ′ ∈ X} ∀y ∈ Y (2)

and let Y (x) and X (y) denote the set of optimal solutions of (1) and
(2), respectively. Consider also the pair of min-max and max-min
problems

p∗ := inf{p(x) : x ∈ X} = inf
x∈X

sup
y∈Y

Ψ(x , y), (3)

d∗ := sup{d(y) : y ∈ Y } = sup
y∈Y

inf
x∈X

Ψ(x , y). (4)

and let X∗ and Y∗ denote the set of optimal solutions of (3) and (4),
respectively



Lemma

(Weak duality): For every (x , y) ∈ X × Y ,

p(x) ≥ Ψ(x , y) ≥ d(y)

As a consequence,
if (x∗, y∗) ∈ X∗ × Y∗, then

p∗ ≥ Ψ(x∗, y∗) ≥ d∗ (5)

for every (x , y) ∈ X × Y ,

p(x) ≥ p∗ ≥ d∗ ≥ d(y) (6)

Proof: Due to the definition of p(x) and d(y) in (1) and (2), it follows that
p(x) ≥ Ψ(x , y) ≥ d(y) for every (x , y) ∈ X × Y . The latter relation with
(x , y) = (x∗, y∗) together with the definition of X∗ and Y∗ then imply (5). The first
and third inequalities in (6) follow from the definitions of p∗ and d∗, respectively, and
the second one follows immediately from the fact that p(x) ≥ d(y) for every
(x , y) ∈ X × Y



Proposition
For a given pair (x∗, y∗) ∈ X × Y , the following conditions are
equivalent:
(a) p(x∗) = d(y∗) ∈ R

(b) p∗ = d∗ ∈ R and (x∗, y∗) ∈ X∗ × Y∗

(c) Ψ(x , y∗) ≥ Ψ(x∗, y∗) ≥ Ψ(x∗, y) for every (x , y) ∈ X × Y
(d) (x∗, y∗) ∈ X (y∗)× Y (x∗)
As a consequence, if Ψ(·, y)− Ψ(x , ·) is convex for every
(x , y) ∈ X × Y , then the above conditions are equivalent to

(0, 0) ∈ ∂[Ψ(·, y∗)− Ψ(x∗, ·)](x∗, y∗)

Def: A pair (x∗, y∗) ∈ X × Y as above is called a saddle point



Proof: By the weak duality lemma, it follows that (a) holds iff

p(x∗) = p∗, d(y∗) = d∗, p∗ = d∗

or equivalently, (b) holds due to the fact that

X∗ = {x∗ ∈ X : p(x∗) = p∗}, Y∗ = {y∗ ∈ Y : d(y∗) = d∗}.

Also, in view of the definitions of the functions p and d , (c) is
equivalent to

d(y∗) = Ψ(x∗, y∗) = p(x∗)

and hence to (a) because of the weak duality lemma with
(x , y) = (x∗, y∗). Moreover, (c) and (d) are obviously equivalent



Remarks:
a) the set of saddle points is a "rectangle", i.e., of the form

X∗ × Y∗

b) the value of Ψ is constant over the set of saddle points and is
equal to p∗ = d∗



Proposition
Assume that X ⊂ Rn is convex, Y ⊂ Rm is compact convex, Ψ is
convex-concave, i.e., Ψ(·, y)− Ψ(x , ·) is closed convex for every
(x , y) ∈ X × Y Then,

inf
x∈X

sup
y∈Y

Ψ(x , y) = sup
y∈Y

inf
x∈X

Ψ(x , y) < ∞

More, if the above supremum is finite then Y∗ ̸= ∅ (i.e., it is
achieved)

More generally, the above result also holds under the condition
that Y is closed convex and there exists x0 ∈ X such that

{y ∈ Y : −Ψ(x0, y) ≤ γ}

is bounded for every γ ∈ R



Corollary
In addition to the assumptions of the above proposition, if X is
also compact, then the value of the above saddle point problem is
finite and X∗ × Y∗ is nonempty and compact



Projected SM for Saddle Point

Assume

X × Y ⊂ Rn × Rm is nonempty closed convex

Ψ : X × Y → R is a differentiable closed convex-concave function
on X × Y . i.e., Ψ(·, y)− Ψ(x , ·) is closed convex for every
(x , y) ∈ X × Y

for every y ∈ Y ,

X (y) := Argmin x∈X Ψ(x , y) ̸= ∅

there holds

inf
x∈X

sup
y∈Y

Ψ(x , y) = sup
y∈Y

min
x∈X

Ψ(x , y) = sup
y∈Y

d(y)

is finite



Idea: Apply projected SM to the dual problem

sup
y∈Y

d(y)

or equivalently,
inf

y∈Y
(−d)(y)



Lemma
Have

a) −d(·) ∈ Conv (Y )

b) if xy ∈ X (y) then −∇y Ψ(xy , y) ∈ ∂(−d)(y)

Proof: a) Since −d(·) = supx∈X −Ψ(x , ·) and −Ψ(x , ·) ∈ Conv (Y ), it
follows that −d ∈ Conv (Y )

b) Assume that xy ∈ X (y), and hence that Ψ(xy , y) = d(y). Then, for
any y ′ ∈ Y , have

(−d)(y ′) = sup
x∈X

−Ψ(x , y ′) ≥ −Ψ(xy , y ′)

≥ −Ψ(xy , y)− ⟨∇y Ψ(xy , y), y ′ − y⟩
= −d(y)− ⟨∇y Ψ(xy , y), y ′ − y⟩

and hence b) follows



Projected SM

0) y0 ∈ Y is given

1) For k = 0, 1, 2, . . ., do
compute xk ∈ X (yk ) := Argmin x∈X Ψ(x , yk )
choose stepsize λk > 0 and set sk = −∇y Ψ(xk , yk )
yk+1 = ProjY (yk − λksk )

Assumption: Ther exists M > 0 such that

∥∇y Ψ(x , y)∥ ≤ M

for every y ∈ Y and x ∈ X (y)

This assumption implies that ∥sk∥ ≤ M for every k ≥ 0



Analysis

For every y ∈ Y , have

∥yk+1 − y∥2 = ∥PY (yk − λksk )− PY (y)∥2

≤ ∥(yk − λksk )− y∥2

= ∥yk − y∥2 + ∥λksk∥2 − 2λk ⟨sk , yk − y⟩

So, for every y ∈ Y ,

∥yk − y∥2 − ∥yk+1 − y∥2 + ∥λksk∥2

≥ 2λk ⟨sk , yk − y⟩
(due to def of sk ) = 2λk ⟨∇y (−Ψ)(xk , yk ), yk − y⟩

(since −Ψ(xk , ·) is convex) ≥ 2λk [(−Ψ)(xk , yk )− (−Ψ)(xk , y)]
≥ 2λk [Ψ(xk , y)− Ψ(xk , yk )]

(since xk ∈ X (yk )) ≥ 2λk [Ψ(xk , y)− Ψ(x , yk )] ∀x ∈ X



Analysis (continued)

Summing the above ineq from k = 0 to k = K ≥ 1, we conclude that for
every (x , y) ∈ X × Y

∥y0 − y∥2 − ∥yK − y∥2 +
K−1
∑
k=1

∥λksk∥2

≥ 2
K−1
∑
k=0

λk [Ψ(xk , y)− Ψ(x , yk )]

≥ 2ΛK [Ψ(x̄K , y)− Ψ(x , ȳK )]

where ΛK := ∑K−1
k=0 λk and

x̄K :=
1

Λk

K−1
∑
k=0

λkxk ȳK :=
1

Λk

K−1
∑
k=0

λkyk



Analysis (continued)

Proposition
For every K ≥ 1 and y ∈ Y , have

∥y0 − y∥2 + ∑K−1
k=0 ∥λksk∥2

2ΛK
≥ Ψ(x̄K , y)− d(ȳK )

If Y is compact, then we can maximize both sides with respect to y ∈ Y
to obtain

D2
Y + ∑K−1

k=0 ∥λksk∥2

2ΛK
≥ p(x̄K )− d(ȳK )

where DY is the diameter of Y



Application

(P) p∗ = inf{f (x) : g(x) ≤ 0, x ∈ X}
where

X is nonempty closed convex
f : Rn → R is convex
g = (g1, . . . , gm) and each gi : Rn → R is convex

Define Y = Rm
+ and

Ψ(x , y) = f (x) + ⟨y , g(x)⟩ ∀y ∈ Y

Have
sup
y∈Y

Ψ(x , y) =
{

f (x) if g(x) ≤ 0
+∞ otherwise

and hence (P) is equivalent to

inf
x∈X

sup
y∈Y

Ψ(x , y)



Application (continued)

For any y ∈ Y and x ∈ X (y) = Argmin {Ψ(x , y) : x ∈ X}, have

−g(x) = −∇y Ψ(x , y) ∈ ∂(−d)(y)

Assumption: There exists M > 0 such that

∥g(x)∥ ≤ M ∀x ∈ X

Remark: Given yk ≥ 0, the SM iteration becomes

xk ∈ Argmin {f (x) + ⟨yk , g(x)⟩ : x ∈ X}

yk+1 = [yk + λkg(xk )]
+



Application (continued)

Proposition
For every K ≥ 1, have

∥g+(x̄K )∥+ f (x̄K )− p∗ ≤
2(∥y0∥2 + 1) + ∑K−1

k=0 λ2
kM2

2ΛK

where g+(·) = max{g(·), 0}

Proof: For every y ∈ Y = Rm
+, have

Ψ(x̄k , y)− p∗ ≤ Ψ(x̄k , y)− d(ȳk ) ≤
∥y0 − y∥2 + ∑K−1

k=0 ∥λksk∥2

2ΛK

≤
∥y0 − y∥2 + ∑K−1

k=0 λ2
kM2

2ΛK

Now take y = g+(x̄K )/∥g+(x̄K )∥ ≥ 0 in the above ineq and use the fact that

∥y − y0∥2 ≤ 2
(
∥y0∥2 + ∥y∥2

)
≤ 2

(
∥y0∥2 + 1

)
Ψ(x̄k , y) = f (x̄K ) + ⟨y , g(x̄K )⟩ = f (x̄K ) + ∥g+(x̄K )∥


