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Saddle point duality

Let XX YCR"XR™and ¥: X XY — R be given and define
p:X — (—o0,00] and d: Y — [—00,00) as
p(x) :=sup{¥(x,y'):y € Y} VxeX (1)
d(y) :=inf{¥(x',y):x' € X} VyeyY (2)

and let Y(x) and X(y) denote the set of optimal solutions of (1) and
(2), respectively. Consider also the pair of min-max and max-min

problems
px = inf{p(x) : x € X} = inf sup ¥(x,y), (3)
xeX yey
dy :=sup{d(y) :y € Y} = sup inf ¥(x,y). (4)
yey xeX

and let X, and Y, denote the set of optimal solutions of (3) and (4),
respectively



(Weak duality): For every (x,y) € X X Y,

p(x) > ¥(x,y) >d(y)

As a consequence,
@ if (xx, yx) € X« X Y, then

P > T(X*,Y*) > dy (5)

@ forevery (x,y) EX XY,

p(x) > pi > di > d(y) (6)

Proof: Due to the definition of p(x) and d(y) in (1) and (2), it follows that

p(x) > ¥(x,y) > d(y) for every (x,y) € X x Y. The latter relation with

(x,y) = (x«, y«) together with the definition of X, and Y. then imply (5). The first
and third inequalities in (6) follow from the definitions of p. and d., respectively, and
the second one follows immediately from the fact that p(x) > d(y) for every
(x,y)eXxY



For a given pair (x., ys) € X X Y, the following conditions are
equivalent:

() p(x) =d(y«) €R

(b) ps = di € R and (xx, yx) € Xi X Yi

() ¥(x,ye) > ¥ (xe,yx) = ¥(xi,y) forevery (x,y) € X XY
(d) (e, ys) € X(ys) X Y ()

As a consequence, if ¥(-,y) — ¥(x, -) is convex for every
(x,y) € X x Y, then the above conditions are equivalent to

(0,0) € A[F (-, ys) — ¥ (6, )] (3 y4)

Def: A pair (x., yx) € X X Y as above is called a saddle point



Proof: By the weak duality lemma, it follows that (a) holds iff

p(xe) = ps, d(ys) =di, ps=d;

or equivalently, (b) holds due to the fact that

Xe={x € X:p(x) =ps}, Ya={y €Y :d(y) =d:}.

Also, in view of the definitions of the functions p and d, (c) is
equivalent to

d(ys) = ¥xeys) = plx)

and hence to (a) because of the weak duality lemma with
(x,y) = (x4, ¥«). Moreover, (c) and (d) are obviously equivalent



Remarks:

a) the set of saddle points is a "rectangle", i.e., of the form
X X Y

b) the value of ¥ is constant over the set of saddle points and is
equal to p, = d,



Proposition

Assume that X C R" is convex, Y C R™ is compact convex, ¥ is
convex-concave, i.e., ¥(-,y) — ¥(x, ) is closed convex for every
(x,y) € X XY Then,

inf sup ¥(x,y) = sup inf ¥(x,y) < oo
x€X yey yey xeX

More, if the above supremum is finite then Y, # @ (i.e., it is
achieved)

More generally, the above result also holds under the condition
that Y is closed convex and there exists xg € X such that

{yeY: ¥y <7}

is bounded for every ¥ € R



In addition to the assumptions of the above proposition, if X is
also compact, then the value of the above saddle point problem is
finite and X, X Yy is nonempty and compact




Projected SM for Saddle Point

Assume
@ X XY CR"”xIR™ is nonempty closed convex

@ ¥: X x Y — R is a differentiable closed convex-concave function
on X X Y. ie., ¥(-,y) —¥(x,-) is closed convex for every
(x,y) €XXY

o forevery y € Y,
X(y) := Argmin ,ex¥(x,y) # @
@ there holds

inf sup ¥(x,y) = sup min¥(x,y) = sup d(y)
XeXyey _}/EYXEX yeyY

is finite



Idea: Apply projected SM to the dual problem

sup d(y)
yYey

or equivalently,

inf (=a)(y)



Have

a) —d(-) € Conv (Y)
b) ifx, € X(y) then =V, ¥(xy,y) € 9(—d)(y)

Proof: a) Since —d(-) = sup,cx —¥(x,-) and —¥(x,-) € Conv (Y), it
follows that —d € Conv (Y)

b) Assume that x, € X(y), and hence that ¥(x,,y) = d(y). Then, for
any y' € Y, have

(—=d)(y') = sup —¥(x,y') > —¥(x.y)

> —¥(xy) — <Vy1F(va)’)vy, —Y)
=—d(y) = (V,¥(x. ).y =)

and hence b) follows



Projected SM

0) yo € Y is given
1) For k=0,1,2,..., do
o compute xx € X(yk) := Argmin ,ex¥(x, yx)

e choose stepsize A > 0 and set s, = =V, ¥ (xk, y«)
° Ykt+1 = Projy (yk — Aksk)
Assumption: Ther exists M > 0 such that
IVy¥(x y)ll <M
for every y € Y and x € X(y)

This assumption implies that ||s|| < M for every k > 0



Analysis

For every y € Y, have

lyks1 — yII? = [Py (yk — Aksk) — Py (y)|?
< [ (yk — Axsk) — yII?
= |lyk — yII® + [ Aksil* = 2k sk, v — ¥)

So, for every y € Y,

1y = yI? = vk = ¥ IP + 1 Awesill?
> 2M i (sk Yk — )
(due to def of s) = 2A,(Vy, (=) (xi, i), vk — ¥)
(since —¥(xk, -) is convex) > 2A4[(—=¥) (xk, vk) — (—=F) (xk, )]
> 2Ak[F (k. y) — ¥ O3k, )]
[ ]

v
(since xx € X(yk)) = 2Ak[¥(xk, ) — ¥ (%, yk)

Vx e X



Analysis (continued)

Summing the above ineq from kK =0 to k = K > 1, we conclude that for
every (x,y) € X XY

K—1

lvo =yl = llyk = yII?P+ ¥ [lAkskl®
k=1

K—

>2 Y A[¥ (%, y) — ¥ k)]

k=

> 2Ax [¥(xk,y) — ¥(x, 7k)]

Jary

o

where Ak := Zf;ol Ak and



Analysis (continued)

Proposition
Forevery K> 1 and y € Y, have

Iyo — yII2 + Zp 0 1Awsill?

Ak > Y¥(xk.,y) —d(yk)

If Y is compact, then we can maximize both sides with respect to y € Y
to obtain

D2 + Y I [ Aksk]?
2A K -

where Dy is the diameter of Y




Application

(P) pe=inf{f(x):g(x) <0,x€ X}
where
@ X is nonempty closed convex
@ f:R" — R is convex
@ g=1(g1,...,8m) and each g; : R” — R is convex
Define Y = R'! and

Y(x.y) =f(x)+{y.g(x)) VyeY

Have

_ [ fx) ifgx) <0
jge‘F(X}/) = { 400 otherwise

and hence (P) is equivalent to

inf sup ¥(x,
ol sup ¥ )



Application (continued)

For any y € Y and x € X(y) = Argmin {¥(x,y) : x € X}, have
—g(x) = =V, ¥(x,y) € 9(=d)(y)
Assumption: There exists M > 0 such that
lgC)ll <M VxeX
Remark: Given y, > 0, the SM iteration becomes
xic € Argmin {£(x) + (yi. g(x)) : x € X}

Yir1 = vk + Akg ()] T



Application (continued)

Proposition

For every K > 1, have

2 2 1 K-1 /\2M2
g™ (xic) || + f(x) — s < (oll”+ QIK&:o .

where g™ () = max{g(-),0}

Proof: For every y € Y = R'7, have

_ o~y 1P+ £l el
- 2Ak

¥ (R y) — pe <Y (Xk,y) —d(k)

K—
< ”yO - ,V”Z + Zkzol )\%(Mz
- 2Ak
Now take y = g™ (xx)/|lg" (%¢)|| > 0 in the above ineq and use the fact that
ly = ol < 2 (llvoll? + llyl1?) <2 (llvoll? +1)

Y (%, y) = f(xx) + (v g(xx)) = F(xx) + llg™ () |




